Previous |  Up |  Next

Article

Title: Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions (English)
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 5
Year: 1990
Pages: 405-417
Summary lang: English
.
Category: math
.
Summary: A second order elliptic problem with axisymmetric data is solved in a finite element space, constructed on a triangulation with curved triangles, in such a way, that the (nonhomogeneous) boundary condition is fulfilled in the sense of a penalty. On the basis of two approximate solutions, extrapolates for both the solution and the boundary flux are defined. Some a priori error estimates are derived, provided the exact solution is regular enough. The paper extends some of the results of J.T. King [6], [7]. (English)
Keyword: finite elements
Keyword: penalty method
Keyword: axisymmetric problems
Keyword: extrapolation
Keyword: a priori error estimates
MSC: 35J25
MSC: 65N15
MSC: 65N30
MSC: 73K25
idZBL: Zbl 0725.65098
idMR: MR1072609
DOI: 10.21136/AM.1990.104420
.
Date available: 2008-05-20T18:39:56Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104420
.
Reference: [1] I. Babuška: The finite element method with penalty.Math. Соmр. 27, (1973), 221 - 228. MR 0351118
Reference: [2] J. H. Bramble V. Thomée: Semidiscrete-least squares methods for a parabolic boundary value problem.Math. Соmр. 26 (1972), 633-648. MR 0349038
Reference: [3] E.J.Haug K. Choi V. Komkov: Design sensitivity analysis of structural systems.Academic Press, London 1986. MR 0860040
Reference: [4] I. Hlaváček M. Křížek: Dual finite element analysis of 3D-axisymmetric elliptic problems.(To appear).
Reference: [5] I. Hlaváček: Domain optimization in axisymmetric elliptic boundary value problems by finite elements.Apl. Mat. 33 (1988), 213-244. MR 0944785
Reference: [6] J. T. King: New error bounds for the penalty method and extrapolation.Numer. Math. 23, (1974), 153-165. Zbl 0272.65092, MR 0400742, 10.1007/BF01459948
Reference: [7] J. T. King S. M. Serbin: Boundary flux estimates for elliptic problems by the perturbed variational method.Computing 16 (1976), 339-347. MR 0418485, 10.1007/BF02252082
Reference: [8] J. Nečas: Les methodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [9] B. Mercier G. Raugel: Resolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en $\theta$.RAIRO, Anal. numér. 16 (1982), 405-461. MR 0684832, 10.1051/m2an/1982160404051
Reference: [10] M. Zlámal: Curved elements in the finite element method.SfAM Numer. Anal. 10, (1973), 229-240. MR 0395263, 10.1137/0710022
.

Files

Files Size Format View
AplMat_35-1990-5_6.pdf 2.073Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo