Previous |  Up |  Next

Article

Title: On semiregular families of triangulations and linear interpolation (English)
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 3
Year: 1991
Pages: 223-232
Summary lang: English
.
Category: math
.
Summary: We consider triangulations formed by triangular elements. For the standard linear interpolation operator $\pi__h$ we prove the interpolation order to be $\left\|v-{\pi__h} v\right\|_{1,p}\leq Ch\left|v\right|_{2,p}$ for $p>1$ provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal's condition upon the minimum angle need not be satisfied. (English)
Keyword: finite elements
Keyword: linear interpolation
Keyword: maximum angle condition
Keyword: Zlámal’s condition
MSC: 41A05
MSC: 65D05
MSC: 65N30
idZBL: Zbl 0728.41003
idMR: MR1109126
DOI: 10.21136/AM.1991.104461
.
Date available: 2008-05-20T18:41:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104461
.
Reference: [1] I. Babuška A. K. Aziz: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. MR 0455462, 10.1137/0713021
Reference: [2] R. E. Barnhill J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds.Numer. Math. 25 (1976), 215-229. MR 0458000
Reference: [3] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [4] J. A. Gregory: Error bounds for linear interpolation on triangles.(in Proc. MAFELAP II, ed. J. R. Whiteman). Academic Press, London, 1976, 163-170. MR 0458795
Reference: [5] P. Jamet: Estimations d'erreur pour des éléments finis droits presque dégénérés.RAIRO Anal. Numér. 10 (1976), 43-60. MR 0455282
Reference: [6] P. Jamet: Estimations de l'erreur d'interpolation dans un domaine variable et applications aux éléments finis quadrilatéraux dégénérés.Méthodes Numériques en Mathématiques Appliquées, Presses de l'Université de Montreal, 55-100. MR 0445863
Reference: [7] M. Křížek: On semiregular families of decompositions of a polyhedron into tetrahedra and linear interpolation.(in Proc. of the 6th Conf. Mathematical Methods in Engineering). ŠKODA, Plzeň, 1991, 269-274.
Reference: [8] M. Křížek P. Neittaanmäki: Finite element approximation of variational problems and applications.Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 50, Longman Scientific & Technical, Harlow, 1990. MR 1066462
Reference: [9] J. Nečas: Les rnéthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [10] G. Strang G. J. Fix: An analysis of the finite element method.Prentice-Hall, INC., New Jersey, London, 1973. MR 0443377
Reference: [11] J. L. Synge: The hypercircle in mathematical physics.Cambridge University Press, Cambridge, 1957. Zbl 0079.13802, MR 0097605
Reference: [12] A. Ženíšek: The convergence of the finite element method for boundary value problems of a system of elliptic equations.Apl. Mat. 14 (1969), 355- 377. MR 0245978
Reference: [13] M. Zlámal: On the finite element method.Numer. Math. 12 (1968), 394-409. MR 0243753, 10.1007/BF02161362
.

Files

Files Size Format View
AplMat_36-1991-3_5.pdf 1.117Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo