Previous |  Up |  Next

Article

Title: Estimation of variance components in mixed linear models (English)
Author: Volaufová, Júlia
Author: Witkovský, Viktor
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 2
Year: 1992
Pages: 139-148
Summary lang: English
.
Category: math
.
Summary: The MINQUE of the linear function $\int'\vartheta$ of the unknown variance-components parameter $\vartheta$ in mixed linear model under linear restrictions of the type $\bold R\vartheta = c$ is defined and derived. As an illustration of this estimator the example of the one-way classification model with the restrictions $\vartheta_1 = k\vartheta_2$, where $k \geq 0$, is given. (English)
Keyword: minimum invariant quadratic estimators
Keyword: MINQUE
Keyword: mixed linear model
Keyword: linear restrictions
Keyword: one-way classification model
MSC: 62F10
MSC: 62J05
MSC: 62J10
idZBL: Zbl 0746.62066
idMR: MR1149163
DOI: 10.21136/AM.1992.104497
.
Date available: 2008-05-20T18:43:19Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104497
.
Reference: [1] C. R. Rao: Estimation of variance and covariance components - MINQUE theory.Journal of Multivariate Analysis 1 (1971), 267-275. Zbl 0223.62086, MR 0301869
Reference: [2] C. R. Rao, J. Kleffe: Estimation of Variance Components and Applications.volume 3 of Statistics and probability, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1988, first edition. Zbl 0645.62073, MR 0933559
Reference: [3] C. R. Rao, S. K. Mitra: Generalized Inverse of Matrices and Its Applications.John Wiley & Sons, New York, London, Sydney, Toronto, 1971, first edition. Zbl 0236.15005, MR 0338013
Reference: [4] J. Seely: Linear spaces and unbiased estimation.Ann. Math. Stat. 41 (1970), 1725-1734. Zbl 0263.62041, MR 0275559, 10.1214/aoms/1177696817
Reference: [5] L. R. Verdooren: Practical aspects of variance component estimation.invited lecture for the 4th International Summer School on Problems of Model Choice and Parameter Estimation in Regression Analysis Mülhausen, GDR, May 1979.
Reference: [6] G. Zyskind: On canonical forms, negative covariance matrices and best and simple least square estimator in linear models.Ann. Math. Stat. 38 (1967), 1092-1110. MR 0214237, 10.1214/aoms/1177698779
.

Files

Files Size Format View
AplMat_37-1992-2_4.pdf 1.198Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo