Previous |  Up |  Next

Article

Title: Finite element solution of a stationary heat conduction equation with the radiation boundary condition (English)
Author: Milka, Zdeněk
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 1
Year: 1993
Pages: 67-79
Summary lang: English
.
Category: math
.
Summary: In this paper we present a weak formulation of a two-dimensional stationary heat conduction problem with the radiation boundary condition. The problem can be described by an operator which is monotone on the convex set of admissible functions. The relation between classical and weak solutions as well as the convergence of the finite element method to the weak solution in the norm of the Sobolev space $H^1 (\Omega)$ are examined. (English)
Keyword: heat conduction
Keyword: heat radiation
Keyword: finite elements
Keyword: Stefan-Boltzmann boundary condition
Keyword: stationary heat conduction
MSC: 35J25
MSC: 65N30
MSC: 80A20
idZBL: Zbl 0782.65130
idMR: MR1202081
DOI: 10.21136/AM.1993.104535
.
Date available: 2008-05-20T18:45:02Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104535
.
Reference: [1] Carrier G. F., Pearson C. E.: Partial differential equations.Theory and Technique, Academic Press, London, 1976. Zbl 0323.35001, MR 0404823
Reference: [2] Ciarlet P. G.: Optimisation, théorie et algorithmes.Dunod, Paris, 1971. MR 0298892
Reference: [3] Delfour M. C., Payre G., Zolésio J. P.: Approximation of nonlinear problems associated with radiating bodies in the space.SIAM J. Numer. Anal. 24 (1987), 1077-1094. MR 0909066, 10.1137/0724071
Reference: [4] Doktor P.: On the density of smooth functions in certain subspaces of Sobolev spaces.Comment. Math. Univ. Carolin. 14 (1973), 609-622. MR 0336317
Reference: [5] Glowinski R.: Lectures on numerical methods for nonlinear variational problems.Tata Inst. of Fundamental Research, Bombay, 1980. MR 0597520
Reference: [6] Hottel A. C., Sarofim A.F.: Radiative transport.McGraw Hill, New York, 1965.
Reference: [7] Jarušek J.: On the regularity of solutions of a thermoelastic system under noncontinuous heating regimes.Apl. Math 35 (1990), 426-450. MR 1089924
Reference: [8] Křížek M.: On semiregular families of triangulations und linear interpolation.Appl. Math. 36 (1991), 223-232. MR 1109126
Reference: [8] Křížek M., Neitaanmaki P.: Finite element approximation of variational problems and applications.Longam, Harlow, 1990.
Reference: [10] Na T. Y.: Computational methods in engineering boundary value problems.Academic Press, London, 1979, pp. 231,232,279. Zbl 0456.76002
Reference: [11] Nečas J.: Les méthodes directes en théorie des eqations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [12] Ohayon R., Gorge Y.: Variational analysis of a non-linear non-homogenous heat conduction problem.Proc. Conf. Numerical Methods for Non-linar Problems, Swansea 1980, Pineridge Press, pp. 673-681.
Reference: [13] Olmstead W. E.: Temperature distribution in a convex solid with a nonlinera radiation boundary condition.J. Math. Mech. 15 (1966), 899-907. MR 0197047
Reference: [14] Szabó B. A., Babuška I.: Finite element analysis.John Willey & Sons, New York, 1991. MR 1164869
Reference: [15] Vujanovič B., Djukič. D.: On the variational principle of Hamilton's typr for nonlinear heat transfer problem.Internat. J. Heat. Mass Transfer (1972), 1111-1123.
Reference: [16] Vujanovič B., Strauss A. M.: Heat transfer with nonlinear boundary conditions via a variational principle.AIAA (1971), 327-330.
.

Files

Files Size Format View
AplMat_38-1993-1_7.pdf 1.100Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo