Title:
|
Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory (English) |
Author:
|
Sichler, Jiří |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
9 |
Issue:
|
4 |
Year:
|
1968 |
Pages:
|
627-635 |
. |
Category:
|
math |
. |
MSC:
|
08-30 |
MSC:
|
08Axx |
MSC:
|
18-00 |
idZBL:
|
Zbl 0204.33301 |
idMR:
|
MR0252305 |
. |
Date available:
|
2008-06-05T20:29:15Z |
Last updated:
|
2012-04-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105205 |
. |
Reference:
|
[1] Z. HEDRLÍN J. LAMBEK: How comprehensive is the category of semigroups.to appear in J. of Algebra. MR 0237611 |
Reference:
|
[2] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras.Ill. J. of Math. 10 (1966), 392-406. MR 0191858 |
Reference:
|
[3] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren.Math. Ann. 178 (1968), 78-82. Zbl 0174.30002, MR 0230794 |
Reference:
|
[4] A. PULTR J. SICHLER: Primitive classes of algebras with two unary idempdent operations, containing all algebraic categories as full subcategories.to appear. MR 0253969 |
Reference:
|
[5] J. SICHLER: Category of commutative groupoids is binding.Comment. Math. Univ. Carolinae 8, 4 (1967), 753-755. Zbl 0168.26703, MR 0228400 |
Reference:
|
[6] J. SICHLER: ${\germ A}(1,1)$ can be strongly embedded into category of semigroups.Comment. Math. Univ. Carolinae 9, 2 (1968), 257-262. MR 0237395 |
Reference:
|
[7] V. TRNKOVÁ: Strong embeddings of category of all groupoids into category of semigroups.Comment. Math. Univ. Carolinae 9, 2 (1968), 251-256. MR 0237394 |
. |