Title:
|
Note on the Fredholm alternative for nonlinear operators (English) |
Author:
|
Fučík, Svatopluk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
12 |
Issue:
|
2 |
Year:
|
1971 |
Pages:
|
213-226 |
. |
Category:
|
math |
. |
MSC:
|
35J60 |
MSC:
|
45G99 |
MSC:
|
47-80 |
MSC:
|
47H15 |
MSC:
|
47J05 |
idZBL:
|
Zbl 0215.21201 |
idMR:
|
MR0288641 |
. |
Date available:
|
2008-06-05T20:35:07Z |
Last updated:
|
2012-04-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105340 |
. |
Reference:
|
[1] S. FUČÍK: Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations.Comment. Math. Univ. Carolinae 11 (1970), 271-284 (preliminary communication). MR 0266000 |
Reference:
|
[1a]
: .Same as 1 (to appear in Čas. Pěst. Mat). |
Reference:
|
[2] R. I. KAČUROVSKIJ: Regular points, spectrum and eigenfunctions of nonlinear operators.(Russian), Dokl. Akad. Nauk SSSR 188 (1969), 274-277. MR 0251599 |
Reference:
|
[3] M. A. KRASNOSELSKIJ: Topological methods in the theory of non-linear integral equations.Pergamon Press, N.Y. 1964. |
Reference:
|
[4] M. KUČERA: Fredholm alternative for nonlinear operators.Comment. Math. Univ. Carolinae 11 (1970), 337-363. MR 0267429 |
Reference:
|
[5] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites.Annali Scuola Norm. Sup. Pisa, XXII (1969), 331-345. Zbl 0187.08103, MR 0267430 |
Reference:
|
[6] J. NEČAS: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type.(to appear). MR 0305171 |
Reference:
|
[7] W. V. PETRYSHYN: Nonlinear equations involving noncompact operators.Proceedings of Symposia in Pure Math., Vol. XVIII, Part 1, 206-233, Providence, R.I., 1970. Zbl 0232.47070, MR 0271789 |
Reference:
|
[8] S. I. POCHOŽAJEV: On the solvability of non-linear equations involving odd operators.Funct. Anal. and Appl. (Russian), 1 (1967), 66-73. |
Reference:
|
[9] M. M. VAJNBERG: Variational methods for the study of non-linear operators.Holden-Day, 1964. |
. |