Previous |  Up |  Next

Article

Title: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type (English)
Author: Hetzer, Georg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 16
Issue: 1
Year: 1975
Pages: 121-138
.
Category: math
.
MSC: 34K15
MSC: 34K99
MSC: 47A50
MSC: 47H10
MSC: 47H15
MSC: 47J05
idZBL: Zbl 0298.47034
idMR: MR0364814
.
Date available: 2008-06-05T20:47:15Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105610
.
Reference: [1] A. L. BADOEV B. N. SADOVSKI: An example of a densifying operator in the theory of differential equations with a deviating argument of neutral type.Soviet Math. Dokl. 10 (1969), 724-728. MR 0247222
Reference: [2] M. A. CRUZ J. K. HALE: Existence, uniqueness and continuous dependence for hereditary systems.Annali di Mathematica, Ser. 3, 85 (1970), 63-81. MR 0262633
Reference: [3] S. FUČÍK: Further remarks on a theorem by E. M. Landesman and A. C. Lazer.Comment. Math. Univ. Carolinae 15 (1974), 259-271. MR 0348260
Reference: [4] S. FUČÍK M. KUČERA J. NEČAS: Ranges of nonlinear asymptotically linear operators.(to appear in J. Differential Equations). MR 0372696
Reference: [5] J. K. HALE J. MAWHIN: Coincidence degree and periodic solutions of neutral equations.J. Differential Equations 15 (1974), 295-307. MR 0336004
Reference: [6] G. HETZER: Some remarks on $\phi$ -operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations.(to appear). Zbl 0316.47041, MR 0385653
Reference: [7] E. M. LANDESMAN A. C. LAZER: Nonlinear perturbations of linear boundary value problems at resonance.J. Math. Mech. 19 (1970), 609-623. MR 0267269
Reference: [8] J. MAWHIN: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces.J. Differential Equations 12 (1972), 610-636. Zbl 0244.47049, MR 0328703
Reference: [9] J. MAWHIN: The solvability of some operator equations with a quasibound nonlinearity in normed spaces.J. Math. Anal. Appl. 45 (1974), 455-467. MR 0333865
Reference: [10] J. MAWHIN: Nonlinear perturbations of Gredholm mappings in normed spaces and applications to differential equations.Trabalho de Matematica Nr. 61, Univ. of Brasília 1974. MR 0369823
Reference: [11] J. NEČAS: On the range of nonlinear operators with linear asymptotes which are not invertible.Comment. Math. Univ. Carolinae 14 (1974), 63-72. MR 0318995
Reference: [12] R. D. NUSSBAUM: A generalization of the Ascoli theorem and an application to functional differential equations.J. Math. Anal. Appl. 35 (1971), 600-610. Zbl 0215.19501, MR 0289898
Reference: [13] R. D. NUSSBAUM: Degree theory for local condensing maps.J. Math. Anal. Appl. 37 (1972), 741-766. Zbl 0232.47062, MR 0306986
Reference: [14] R. D. NUSSBAUM: Existence and uniqueness theorems for some functional differential equations of neutral type.J. Differential Equations 11 (1972), 607-623. Zbl 0263.34070, MR 0294825
Reference: [15] B. N. SADOVSKI: Applications to topological methods in the theory of periodic solutions of nonlinear differential operator equations of neutral type.Soviet Math. Dokl. 12 (1971), 1543-1547.
Reference: [16] B. N. SADOVSKI: Limit-compact and condensing operators.Russian Math. Surveys 27 (1972), 85-155. MR 0428132
Reference: [17] S. A. WILLIAMS: A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem.J. Differential Equations 8 (1970), 580-586. MR 0267267
.

Files

Files Size Format View
CommentatMathUnivCarol_016-1975-1_10.pdf 974.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo