Previous |  Up |  Next

Article

Title: Metamathematics of the alternative set theory. I. (English)
Author: Sochor, Antonín
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 20
Issue: 4
Year: 1979
Pages: 697-722
.
Category: math
.
MSC: 02K05
MSC: 02K10
MSC: 02K15
MSC: 03E35
MSC: 03E70
idZBL: Zbl 0433.03028
idMR: MR555184
.
Date available: 2008-06-05T21:03:03Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105962
.
Related article: http://dml.cz/handle/10338.dmlcz/106132
Related article: http://dml.cz/handle/10338.dmlcz/106212
.
Reference: [B] P. BERNAYS: A system of axiomatic set theory.Journ. Symb. Logic 2 (1937), 65-77. Zbl 0019.29403
Reference: [B-S] J. L. BELL A. B. SLOMSON: Models and Ultraproducts.North-Holland 1971.
Reference: [B-H-P] R. BOYD G. HENSEL H. PUTNAM: A recursion-theoretic characterization of the ramified analytic hierarchy.T.A.M.S. 141 (1969), 37-62. MR 0242673
Reference: [E] H. ENDERTON: Constructible $\beta $-models.Zeitschrift f. math. Logik 19 (1973), 277-282. Zbl 0301.02053, MR 0325376
Reference: [C] P. COHEN: The independence of the continuum hypothesis.Proc. Nat. Acad. Sci. 50 (1963), 1143-1148 and 51 (1964), 105-110. MR 0157890
Reference: [G] K. GÖDEL: The consistency of the axiom of choice and of the generalized continuum hypothesis.Ann. of Math. Studies, Princeton 1940.
Reference: [F] S. FEFERMAN: Arithmetization of metamathematics in a general setting.Fundamenta Math. 49 (1960-61), 35-92. Zbl 0095.24301, MR 0147397
Reference: [H] A. HAJNAL: On a Consistency Theorem Connected with the Generalized Continuum Problem.Zeitschrift f. math. Logik 2 (1956), 131-136. Zbl 0074.01203, MR 0091914
Reference: [M] R. MONTAGUE: Semantical closure ani non-finite axiomatizability I in Infinistic methods.Warsaw 1959, 45-69. MR 0150033
Reference: [Mo] A. MOSTOWSKI: On models of axiomatic systems.Fund. Math. 39 (1952), 133-158. MR 0054547
Reference: [M-H] M. MACHOVER J. HIRSCHFELD: Lectures on Non-Standard Analysis.Lect. Notes in Math, no 94, Springer 1969. MR 0249285
Reference: [M-S] W. MAREK A. SOGHOR: On weak Kelley-Morse theory of classes.Comment. Math. Univ. Carolinae 19 (1978), 371-381. MR 0491176
Reference: [M-St] W. MAREK M. STREBRNY: No minimal transitive model of $Z^-$.Zeitschr. f. math. Logik 21 (1975), 225-228. MR 0381996
Reference: [N] I. L. NOVAK: Models of consistent systems.Fund. Math. 37 (1950), 87-110. Zbl 0039.24504, MR 0041082
Reference: [R] L. RIEGER: A contribution to Gödel's axiomatic set theory III.Czech. Math. J. 9 (1959), 51-88.
Reference: [Ro] A. ROBINSON: Non-Standard Analysis.North-Holland, Amsterdam 1966. Zbl 0151.00803, MR 0205854
Reference: [Sh] J. R. SHOENFIELD: Mathematical Logic.Reading, Mass. 1968. MR 0225631
Reference: [Sh 1] J. R. SHOENFIELD: A relative consistency proof.JSL 19 (1954), 21-28. Zbl 0055.00404, MR 0060433
Reference: [Sk] T. SKOLEM: Einige Bemerkung zur axiomatischen Begründung der Mengenlehre.Wissenschaftl. Vorträge gen. a. d. V. Kongress d. Skandinavischer Mathematiker, Helsingfors 1923, 217-232.
Reference: [So 1] A. SOCHOR: The alternative set theory.Set theory and hierarchy theory - A Memorial tribute to A. Mostowski, Lect. Notes in Math, no 537, 259-271, Springer 1976. Zbl 0344.02049, MR 0462948
Reference: [So 2] A. SOCHOR: Differential calculus in alternative set theory.Set theory and hierarchy theory V, Lect. Notes in Math, no 619, 273-284, Springer 1977. MR 0472524
Reference: [So 3] A. SOCHOR: Real classes in the ultrapower of hereditarily finite sets.Comment. Math. Univ. Carolinae 16 (1975), 637-640. Zbl 0327.02047, MR 0389588
Reference: [S-V 1] A. SOCHOR P. VOPĚNKA: Endomorphic universes and their standard extensions.Comment. Math. Univ. Carolinae 20 (1979), 605-629. MR 0555178
Reference: [S-V 2] A. SOCHOR P. VOPĚNKA: Revealments.to appear in Comment. Math. Univ. Carolinae 21 (1980). MR 0566243
Reference: [T-M-R] A. TARSKI A. MOSTOWSKI A. ROBINSON: Undecidable Theories.North-Holland 1953. MR 0058532
Reference: [V] P. VOPĚNKA: Mathematics in Alternative Set Theory.Teubner-Texte, Leipzig 1979. MR 0581368
Reference: [V-H] P. VOPĚNKA P. HÁJEK: The Theory of Semisets.North-Holland Amsterdam and Academia Prague 1972. MR 0444473
Reference: [Z] P. ZBIERSKI: Models for higfter order arithmetic.BAPS 19 (1971), 557-562. MR 0307907
.

Files

Files Size Format View
CommentatMathUnivCarol_020-1979-4_7.pdf 1.814Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo