[1] J. C. ABBOTT:
Semi-boolean algebra. Mat. Vestnik 4 (19) (1967), 177-198.
MR 0239957
[2] G. GRÄTZER:
Two Mal'cev-type theorems in universal algebra. J. Combinatorial Theory 8 (1970), 334-342.
MR 0279022 |
Zbl 0194.01401
[3] G. GRÄTZER:
Universal Algebra. Second Expanded Edixion, Springer-Verlag, Berlin, Heidelberg and New York, 1979.
MR 0538623
[4] J. HAGEMANN A. MITSCHKE:
On n-permutable congruences. Algebra Universalis 3 (1973), 8-12.
MR 0330010
[6] I. CHAJDA:
Recent results and trends in tolerances on algebras and varieties. Colloq. Math. (Szeged), Vol. 28, Finite algebras and multiple-valued logic, (1981), 69-95.
MR 0648608 |
Zbl 0484.08002
[7] I. CHAJDA B. ZELINKA:
Minimal compatible tolerances on lattices. Czech. Math. J. 27 (1977), 452-459.
MR 0457300
[8] J. JEŽEK:
Universal Algebra and Model Theory. (in Czech), SNTL, Praha 1976.
MR 0546057
[9] T. KATRIŇAK:
Congruence lattices of distributive $p$-algebras. Algebra Universalis 7 (1977), 26 5-271.
MR 0434908
[1O] A. I. MAL'CEV:
On the general theory of algebraic systems. (in Russian), Math. Sbornik N.S. 35 (77) (1954), 3-20.
MR 0065533
[11] A. MITSCHKE:
Implication algebras are $3$-permutable and $3$-distributive. Algebra Universalis 1 (1971), 182-186.
MR 0309828 |
Zbl 0242.08005
[12] H. WERNER:
A Mal'cev condition for admissible relations. Algebra Universalis 3 (1973), 263.
MR 0330009 |
Zbl 0276.08004
[13] R. WILLE:
Kongruenzklassengeometrien. Lecture Notes in Mathematics No. 113, Springer-Verlag, Berlin,1970.
MR 0262149 |
Zbl 0191.51403