[1] A. AMBROSETTI: 
Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Padova 39 (1967), 349-360. 
MR 0222426 | 
Zbl 0174.46001[2] C. BERGE: 
Topological Spaces. Edinburgh and London, 1963. 
Zbl 0114.38602[3] E. CRAMER V. LAKSHMIKANTHAN A. R. MITCHELL: 
On the existence  of weak solutions of differential equations in nonreflexive Banach spaces. Nonlinear Analysis. Theory, Methods and Applications 2 (1978), 169-177. 
MR 0512280[4] J. DANEŠ: 
Some fixed point theorems. Comment. Math. Univ. Carolinae 9 (1968), 223-235. 
MR 0235435[5] G. DARBO: 
Punti uniti in transformazioni a codomino non compatto. Rend.  Sem. Mat. Univ. Padova 24 (1955), 84-92. 
MR 0070164[6] F. DE BLASI: 
On a property of the unit sphere in a Banach space. Bull. Math, de la Soc. Sci. de la R.S. de Roumanie 21 (69) (1977), 259-262. 
MR 0482402 | 
Zbl 0365.46015[7] K. DEIMLING: 
Ordinary Differential Equations in Banach Spaces. Lect. Notes in Math. 596, Springer-Verlag, 1977. 
MR 0463601 | 
Zbl 0361.34050[8] K. KURATOWSKI: 
Topologie. Vol. 1. Academic Press, New York, 1966. 
MR 0217751[9] R. H. MARTIN, Jr.: 
Nonlinear Operators and Differential Equations in Banach Spaces. John Wiley and Sons, New York,  1976. 
MR 0492671 | 
Zbl 0333.47023[10] M. Z. NASHED J. S. W. WONG: 
Some variants of a fixed point theorem of Krasnoselskii and applications to non-linear integral equations. J. Math. Mech. 18 (1969), 767-777. 
MR 0238140[11] J. M. ORTEGA W. C. RHEINBOLDT: 
Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press, New York, 1970. 
MR 0273810[12] B. RZEPECKI: Differential equations in linear spaces. Ph.D. Thesis. A. Mickiewicz University, Poznań 1976.
[13] B. RZEPECKI: 
On the method of Euler polygons for the differential equations in locally convex spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414. 
MR 0374593[14] B. RZEPECKI: 
A functional differential equation in m Banach space. Ann. Polon. Math. 36 (1979), 95-100. 
MR 0529310[15.] B. N. SADOVSKII: 
Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. 
MR 0428132[16] A. SZÉP: 
Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Studia Scientiarum Math. Hungarica 6 (1971), 197-203. 
MR 0330688[17] S. SZUFLA: 
Some remarks on ordinary differential equations in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. 
MR 0239238[18] S. SZUFLA: 
Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. 
MR 0492684 | 
Zbl 0384.34039