Previous |  Up |  Next

Article

Title: Generic differentiability of mappings and convex functions in Banach and locally convex spaces (English)
Author: Le Van Hot
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 2
Year: 1982
Pages: 207-232
.
Category: math
.
MSC: 46A55
MSC: 46B20
MSC: 46G05
MSC: 47H15
MSC: 47H99
MSC: 58C20
MSC: 58C25
idZBL: Zbl 0533.46030
idMR: MR664969
.
Date available: 2008-06-05T21:11:20Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106147
.
Reference: [1] R. ANANTHARAMAN T. LEVIS J. H. M. WHITFIELD: Smoothabilily, strong smoothability and dentability in Banach spaces.Canad. Math. Bull. 24 (1981), 59-68. MR 0611210
Reference: [2] N. ARONSZAJN: Differentiability of Lipschitzian mappings between Banach spaces.Studia Math. 57 (1976), 147-190. Zbl 0342.46034, MR 0425608
Reference: [3] E. ASPLUND: Fréchet differentiability of convex functions.Acta Math. 121 (1968), 31-48. Zbl 0162.17501, MR 0231199
Reference: [4] E. ASPLUND R. J. ROCKAFFELAR: Gradients of convex functions.Trans. Amer. Math. Soc. 139 (1969), 443-467. MR 0240621
Reference: [5] J. M. BORWEIN: Weak local supportability and application to approximation.Pacific J. Math. 82 (1979), 323-338. MR 0551692
Reference: [6] J. R. CHRISTENSEN: Topology and Borel structure.Math. Studia No. 10 North-Holland, Amsterdam 1974. Zbl 0273.28001
Reference: [7] F. H. CLARK: Generalized gradients and applications.Trans. Amer. Math. Soc. 205 (1975), 247-262. MR 0367131
Reference: [8] J. B. COLLIER: A claas of strong differentiability spaces.Proc. Amer. Math. Soc. 53 (1975), 420-422. MR 0388044
Reference: [9] J. DIESTEL: Geometry of Banach spaces.Lecture Notes in Math. No. 485, Springer-Verlag 1975. Zbl 0307.46009, MR 0461094
Reference: [10] G. EDGAR: Meaaurability in Banach spaces.Indiana Univ. Math. J. 26 (1977), 663-677.
Reference: [11] I. EKELAND G. LEBOURG: Generic differentiability and perturbed optimization problems in Banach spaces.Trans. Amer. Math. Soc. 224 (1976), 193-216. MR 0431253
Reference: [12] R. E. HUFF P. D. MORRIS: Dual spaces with the Krein-Milman property have the Radon-Nikodym property.Proc. Amer. Math. Soc. 49 (1975), 104-108. MR 0361775
Reference: [13] KA SING LAU C. E. WEIL: Differentiability via directional derivatives.Proc. Amer. Math. Soc. 70 (1978), 11-1. MR 0486354
Reference: [14] J. KOLOMÝ: On the differentiability of operators and convex functions.Comment. Math. Univ. Carolinae 9 (1968), 441-454. MR 0238077
Reference: [15] M. K. KRASNOSELSKIJ P. P. ZABREJKO E. I. PUSTYLNIK P. E. SOBOLEVSKIJ: Integralnyje operatory v prostranstvach summirujemych funkcij.Moskva 1966.
Reference: [16] KUTATELADZE: Vypuklyje operatory.Uspechy Mat. nauk 34 (1979), 167-196.
Reference: [17] D. G. LARMAN R. R. PHELPS: Gâteaux differentiability of convex functions on Banach spaces.London Math. Soc. 20 (1979), 115-127. MR 0545208
Reference: [18] G. LEBOURG: Generic differentiability of Lipschitzian functions.Trans. Amer. Math. Soc. 256 (1979), 125-144. Zbl 0435.46031, MR 0546911
Reference: [19] P. MANKIEWICZ: On Lipschitz mapping between Fréchet spaces.Studia Math. 41 (1972), 225-241. MR 0308724
Reference: [20] F. MIGNOT: Côntrol danse lea variationelles elliptiques.J. Functional Analysis 22 (2) (1976). MR 0423155
Reference: [21] I. NAMIOKA R. R. PHELPS: Banach spaces which are Asplund spaces.Duke Math. J.-42 (1975), 735-750. MR 0390721
Reference: [22] K. RITTER: Optimization theory in linear spaces: part III, Mathematical programming in partial ordered Banach spaces.Math. Ann. 184 (1970), 133-154. MR 0258468
Reference: [23] H. H. SCHAEFER: Banach lattices and positive operators.Springer-Verlag, New York 1974. Zbl 0296.47023, MR 0423039
Reference: [24] M. TALAGRAND: Deux examples de fonetions convexes.C.R. Acad. Sci. AB 288, No 8 (1979), A461-A464. MR 0527697
Reference: [25] M. M. VAJNBERG: Variacionnyje metody issledovanija neline jnych operatorov.Nauka, Moskva 1956.
Reference: [26] S. YAMAMURO: Differential calculus in topological linear spaces.Lecture Notes in Mathematics No 374, Springer-Verlag, New York 1974. Zbl 0276.58001, MR 0488118
Reference: [27] Ch. STEGALL: The duality between Asplund spaces and spaces with Radon-Nikodym property.Israel J. Math. 59 (1978), 408-412. MR 0493268
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-2_1.pdf 1.758Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo