[1] ASH R. B.:
Measure, Integration and Functional Analysis. Academic Press, New York and London 1972.
MR 0435321 |
Zbl 0249.28001
[3] CONSTANTINESCU C., CORNE A.:
Potential Theory on Harmonic Spaces. Springer Verlag, New York 1972.
MR 0419799
[4] FENTON P. C.:
On sufficient conditions for harmonicity. Trans. Amer. Math, Soc. 253 (1979), 139-147.
MR 0536939 |
Zbl 0368.31001
[5] HEATH D.:
Functions possessing restricted mean value properties. Proc. Amer. Math. Soc 41 (1973), 588-595.
MR 0333213 |
Zbl 0251.31004
[6] KELLOG O. D.:
Converses of Gauss's theorem on the arithmetic mean. Trans. Amer. Math. Soc. 36 (1934), 227-242.
MR 1501739
[7] LEBESGUE H.: Sur le problème de Dirichlet. C. R. Acad. Sci. Paris 154 (1912), 335-337.
[8] LEBESGUE H.: Sur le théorème de la moyenne de Gauss. Bull. Soc. Math, France 40 (1912), 16-17.
[9] NETUKA I.:
Harmonic functions and the mean value theorems. (in Czech), Čas. pěst. mat. 100 (1975), 391-409.
MR 0463461
[10] NETUKA I.:
L'unicité du problème de Dirichlet généralisé pour un compact. in; Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Mathematics 906, Springer Verlag, Berlin 1982, 269-281.
MR 0663569 |
Zbl 0481.31008
[11] ØKSENDAL B., STROOCK D. W.: A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations. translations and dilatations (preprint).
[12] VEECH W. A.:
A converse to the mean value theorem for harmonic functions. Amer. J. Math. 97 (1976), 1007-1027.
MR 0393521 |
Zbl 0324.31002
[13] VESELÝ J.:
Sequence solutions of the Dirichlet problem. Čas. pěst. mat. 106 (1981), 84-93.
MR 0613711