[1] A. AMBROSETTI: 
Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. 
MR 0222426 | 
Zbl 0174.46001[2] K.  DEIMLING: 
Ordinary differential equations in Banach spaces. Lect.  Notes in Math. 596, Springer-Verlag, Berlin 1977. 
MR 0463601 | 
Zbl 0361.34050[3] K.  GOEBEL E. RZYMOWSKI: 
An existence theorem for the equation $x' =  f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28 (1970),  367-370. 
MR 0269957[4] R. H. MARTIN, Jr.: 
Nonlinear operators and differential equations in Banach spaces. John Wiley and Sons, New York 1976. 
MR 0492671 | 
Zbl 0333.47023[5] B. RZEPECKI: 
On the method of Euler polygons for the differential equation in a locally convex space. Bull. Acad.  Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414. 
MR 0374593 | 
Zbl 0315.34078[6] B. RZEPECKI: Differential equations in linear spaces. PhD Thesis, University of Poznań,  1976.
[7] B. RZEPECKI: 
A functional differential equation in a Banach space. Ann. Polon. Math. 36 (1979), 95-100. 
MR 0529310 | 
Zbl 0414.34071[8] B. RZEPECKI: 
On measure of noncompactness in topological spaces. Comment. Math. Univ. Carolinae 23 (1982), 105-116. 
MR 0653354[9] S. SZUFLA: 
Structure of the solutions set of ordinary differential equations in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144. 
MR 0333390 | 
Zbl 0257.34064[10] S. SZUFLA: 
Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad.  Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. 
MR 0492684 | 
Zbl 0384.34039