[1] A. AMBROSETTI:
Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.
MR 0222426 |
Zbl 0174.46001
[2] K. DEIMLING:
Ordinary differential equations in Banach spaces. Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977.
MR 0463601 |
Zbl 0361.34050
[3] K. GOEBEL E. RZYMOWSKI:
An existence theorem for the equation $x' = f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28 (1970), 367-370.
MR 0269957
[4] R. H. MARTIN, Jr.:
Nonlinear operators and differential equations in Banach spaces. John Wiley and Sons, New York 1976.
MR 0492671 |
Zbl 0333.47023
[5] B. RZEPECKI:
On the method of Euler polygons for the differential equation in a locally convex space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414.
MR 0374593 |
Zbl 0315.34078
[6] B. RZEPECKI: Differential equations in linear spaces. PhD Thesis, University of Poznań, 1976.
[7] B. RZEPECKI:
A functional differential equation in a Banach space. Ann. Polon. Math. 36 (1979), 95-100.
MR 0529310 |
Zbl 0414.34071
[8] B. RZEPECKI:
On measure of noncompactness in topological spaces. Comment. Math. Univ. Carolinae 23 (1982), 105-116.
MR 0653354
[9] S. SZUFLA:
Structure of the solutions set of ordinary differential equations in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144.
MR 0333390 |
Zbl 0257.34064
[10] S. SZUFLA:
Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413.
MR 0492684 |
Zbl 0384.34039