Previous |  Up |  Next

Article

References:
[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. MR 0222426 | Zbl 0174.46001
[2] K. DEIMLING: Ordinary differential equations in Banach spaces. Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. MR 0463601 | Zbl 0361.34050
[3] K. GOEBEL E. RZYMOWSKI: An existence theorem for the equation $x' = f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28 (1970), 367-370. MR 0269957
[4] R. H. MARTIN, Jr.: Nonlinear operators and differential equations in Banach spaces. John Wiley and Sons, New York 1976. MR 0492671 | Zbl 0333.47023
[5] B. RZEPECKI: On the method of Euler polygons for the differential equation in a locally convex space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414. MR 0374593 | Zbl 0315.34078
[6] B. RZEPECKI: Differential equations in linear spaces. PhD Thesis, University of Poznań, 1976.
[7] B. RZEPECKI: A functional differential equation in a Banach space. Ann. Polon. Math. 36 (1979), 95-100. MR 0529310 | Zbl 0414.34071
[8] B. RZEPECKI: On measure of noncompactness in topological spaces. Comment. Math. Univ. Carolinae 23 (1982), 105-116. MR 0653354
[9] S. SZUFLA: Structure of the solutions set of ordinary differential equations in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144. MR 0333390 | Zbl 0257.34064
[10] S. SZUFLA: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. MR 0492684 | Zbl 0384.34039
Partner of
EuDML logo