Previous |  Up |  Next

Article

Title: On the equation $y'=f(t,y)$ in Banach spaces (English)
Author: Rzepecki, Bogdan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 24
Issue: 4
Year: 1983
Pages: 609-630
.
Category: math
.
MSC: 34G20
idZBL: Zbl 0554.34040
idMR: MR738558
.
Date available: 2008-06-05T21:16:27Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106260
.
Reference: [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach.Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. Zbl 0174.46001, MR 0222426
Reference: [2] J. BANAŚ K. GOEBEL: Measure of noncompactness in Banach spaces.Lect. Notes Pure Applied Math. 60, Marcel Dekker, New York 1980. MR 0591679
Reference: [3] J. BANAŚ A. HAJHOSZ S. WEDRYCHOWICZ: Some generalization of Szufla's theorem for ordinary differential equations in Banach space.Bull. Acad. Polon. Sci., Sér. Sci. Math. 29 (1981), 459-464. MR 0646334
Reference: [4] J. DANEŠ: Some fixed point theorems.Comment. Math. Univ. Carolinae 9 (1968), 223-235. MR 0235435
Reference: [5] J. DANEŠ: On denslfying and related mappings and their application in nonlinear functional analysis, Theory of nonlinear operators.Akademie-Verlag, Berlin 1974, 15-56. MR 0361946
Reference: [6] K. DEIMLING: Ordinary differential equations in Banach spaces.Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. Zbl 0361.34050, MR 0463601
Reference: [7] K. GOEBEL W. RZYMOWSKI: An existence theorem for the equation $x' = f(t,x)$ in Banach space.Bull. Acad. Polon. Sol., Sér. Sol. Math. Astronom. Phys. 28 (1970), 367-370. MR 0269957
Reference: [8] M. A. KPACHOCEЛЬCKИЙ C. Г. KPEЙH: O npинсипe ycpeднения в нeлинейной механике.Ycnexн Mат. Hayx 10 (1955), 147-152.
Reference: [9] K. KURATOWSKI: Sur les espaces complete.Fund. Math. 15 (1930), 301-309.
Reference: [10] V. LAKSHMIKANTHAM S. LEELA: Differential and integral inequalities.Vol. 1, Academic Press, New York 1969.
Reference: [11] B. RZEPECKI: On the operator equation in Banach spaces.Demonstratio Math. 12 (1979), 189-201. Zbl 0421.47034, MR 0542317
Reference: [12] B. RZEPECKI: Some properties of the set of solutions on an operator equation in a Banach space.Comment. Math. 22 (1978), 467-478. MR 0519385
Reference: [13] B. RZEPECKI: On measure of noncompactness in topological spaces.Comment. Math. Univ. Carolinae 23 (1982), 105-116. MR 0653354
Reference: [14] B. RZEPECKI: Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces.Comment. Math. Univ. Carolinae 23 (1982), 657-669. Zbl 0517.34049, MR 0687561
Reference: [15] B. N. SADOVSKII: Limit compact and condensing operators.Russian Math. Surveys 27 (1972), 86-144. MR 0428132
Reference: [16] A. STOKES: The application of a fixed-point theorem to a variety of nonlinear stability problems.Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 231-235. MR 0104006
Reference: [17] J. SZARSKI: Differential inequalities.PWN, Warszawa 1965. Zbl 0135.25804, MR 0190409
Reference: [18] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 16 (1968), 795-800. Zbl 0177.18902, MR 0239238
Reference: [19] S. SZUFLA: Solutions sets of nonlinear equations.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 21 (1973), 971-976. Zbl 0272.34086, MR 0344959
Reference: [20] S. SZUFLA: Some properties of the solutions set of ordinary differential equations.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 22 (1974), 675-678. Zbl 0289.34096, MR 0355245
Reference: [21] S. SZUFLA: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. Zbl 0384.34039, MR 0492684
.

Files

Files Size Format View
CommentatMathUnivCarol_024-1983-4_4.pdf 1.323Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo