[1] Bauer H.:
Šilovscher Rand und Dirichletsches. Problem. Ann. Inst. Fourier 11, 89-136 (1961).
Zbl 0098.06902
[2] Berg C., Forst G.:
Potential theory on locally compact Abelian groups. Springer Verlag. Berlin - Heidelberg - New York (1975).
Zbl 0308.31001
[3] Bliedtner J., Hansen W.:
Markov processes and harmonic spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 42, 309-325 (1978).
Zbl 0366.60104
[4] Boboc N., Cornea A.: Convex cones of lower semi-continuous functions on compact spaces. Rev. Roum. Math. Pures Appl. 12, 471-525 (1967).
[5] Boboc N., Bucur Gh., Cornea A.:
Cones of potentials on topological spaces. Rev. Roum. Math. Pures Appl. 18, 815-865 (1973).
Zbl 0271.54009
[6] Constantinescu C., Cornea A.:
Potential theory on harmonic spaces. Springer Verlag. Berlin - Heidelberg - New York (1972).
Zbl 0248.31011
[7] Landkof N. S.:
Foundations of modern potential theory. Springer Verlag. Berlin - Heidelberg - New York (1972).
MR 0350027 |
Zbl 0253.31001
[8] Král J.:
A note on continuity principle in potential theory. Comment. Math. Univ. Carolinae 25, 149-157 (1984).
MR 0749123
[9] Netuka I.:
Continuity and maximum principle for potentials of signed measures. Czechoslovak Math. J. 25, 309-316 (1975).
MR 0382690 |
Zbl 0309.31019