Previous |  Up |  Next

Article

Title: On bounded solutions of a linear differential equation with a nonlinear perturbation (English)
Author: Rzepecki, Bogdan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 25
Issue: 4
Year: 1984
Pages: 635-645
.
Category: math
.
MSC: 34A34
MSC: 34C11
MSC: 34G20
idZBL: Zbl 0558.34052
idMR: MR782013
.
Date available: 2008-06-05T21:19:32Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106330
.
Reference: [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach.Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. Zbl 0174.46001, MR 0222426
Reference: [2] M. BOUDOURIDES: On bounded solutions of nonlinear ordinary differential equations.Comment. Math. Univ. Carolinae 22 (1981), 15-26. Zbl 0448.34038, MR 0609933
Reference: [3] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis.Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. MR 0361946
Reference: [4] K. DEIMLING: Ordinary differential equations in Banach spaces.Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. Zbl 0361.34050, MR 0463601
Reference: [5] K. KURATOWSKI: Sur les espaces complete.Fund. Math. 15 (1930), 301-309.
Reference: [6] R. MARTIN: Nonlinear operators and differential equations in Banach spaces.Wiley Publ., New York 1976. Zbl 0333.47023, MR 0492671
Reference: [7] J. L. MASSERA J. J. SCHÄFFER: Linear differential equations and functional analysis.Ann. Math. 67 (1958), 517-573. MR 0096985
Reference: [8] J. L. MASSERA J. J. SCHÄFFER: Linear differential equations and functional spaces.Academic Press, New York 1966. MR 0212324
Reference: [9] B. RZEPECKI: Remarks on Schauder's fixed point principle and its applications.Bull. Acad. Polon. Sci., Sér. Math, 27 (1979), 473-480. Zbl 0435.47057, MR 0560183
Reference: [10] B. N. SADOVSKII: Limit compact and condensing operators.Russian Math. Surveys 27 (1972), 86-144. MR 0428132
Reference: [11] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. Zbl 0177.18902, MR 0239238
Reference: [12] S. SZUFLA: On the boundedness of solutions of non-linear differential equations in Banach spaces.Comment. Math, 21 (1979), 381-387. Zbl 0432.34040, MR 0577527
.

Files

Files Size Format View
CommentatMathUnivCarol_025-1984-4_5.pdf 708.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo