Previous |  Up |  Next

Article

Title: The central limit problem for strictly stationary sequences [Abstract of thesis] (English)
Author: Volný, Dalibor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 26
Issue: 4
Year: 1985
Pages: 840-842
.
Category: math
.
MSC: 60F05
MSC: 60G10
MSC: 60G42
idZBL: Zbl 0584.60037
.
Date available: 2008-06-05T21:23:40Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106422
.
Reference: [1] Billingsley P.: The Lindeberg-Lévy theorem for martingales.Proc. Amer. Math. Soc. 12 (1961), 788-792. Zbl 0129.10701, MR 0126871
Reference: [2] Bradley R. C., Jr.: Information regularity and the central limit question.Rocky Mountain Journ. of Math. 13 (1983), 77-97. Zbl 0521.60039, MR 0692579
Reference: [3] Eagleson G. K.: On Gordin's central limit theorem for stationary processes.J. Appl. Probab. 12 (1975), 176-179. Zbl 0306.60017, MR 0383501
Reference: [4] Gordin M. I.: The central limit theorem for stationary processes.Soviet Math. Dokl. 10 (1969), 1174-1176. Doklady AN SSSR 188 (1969), 739-741. Zbl 0212.50005, MR 0251785
Reference: [5] Hall P., Heyde C. C.: Martingale Limit Theory and its Application.Academic Press New York (1980). Zbl 0462.60045, MR 0624435
Reference: [6] Heyde C. C.: On the central limit theorem for stationary processes.Z. Wahrsch. Verw. Gebiete 30 (1974), 315-320. Zbl 0297.60014, MR 0372955
Reference: [7] Ibragimov I. A.: A central limit theorem for a class of dependent random variables.Theory Probab. Appl. 8 (1963), 83-89. Zbl 0123.36103, MR 0151997
Reference: [8] Volný D.: A negative answer to the central limit problem for strictly stationary sequences.Proc. 3rd Prague Symp. on Asymptotic Statistics, 433-441, Elsevier Science Publ. B. V., Amsterdam (1984) MR 0785422
.

Files

Files Size Format View
CommentatMathUnivCarol_026-1985-4_22.pdf 339.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo