[1] J. BANAŚ K. GOEBEL: 
Measures of noncompactness in Banach spaces. Marcel Dekker, Lecture Notes in Pure and Applied Math., vol. 60 (1980), New York and Basel. 
MR 0591679[2] J. BANAŚ A. HAJNOSZ S. WĘDRYCHOWICZ: 
Relations among various criteria of uniqueness for ordinary differential equations. Comment. Math. Univ. Carolinae 22 (1981), 59-70. 
MR 0609936[3] J. BANAŚ A. HAJNOSZ S. WĘDRYCHOWICZ: 
On the equation $x' =  f(t,x)$ in Banach spaces. Comment. Math. Univ. Carolinae 23 (1982), 233-247. 
MR 0664970[4] K. DEIMLING: 
Ordinary differential equations in Banach spaces. Lecture Notes in Math., 596, Springer Verlag 1977. 
MR 0463601 | 
Zbl 0361.34050[5] K. GOEBEL W. RZYMOWSKI: 
An existence theorem for the equation $x'=f(t,x)$ in Banach spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 367-370. 
MR 0269957[6] V. LAKSHMIKANTHAM S. LEELA: Differential and integral inequalities. Academic Press, New York 1969.
[7] S. ŁOJASIEWICZ: An introduction to the theory of real functions. PWN Warszawa, 1975 (in Polish).
[8] M. NAGUMO: Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichung erster Ordnung. Japan J. Math., 3 (1926), 107-112.
[11] S. SZUFLA: 
On the existence of solutions of ordinary differential equations in Banach spaces. Boll. Un. Mat. Ital., 5, 15-A (1978), 535-544. 
MR 0521098 | 
Zbl 0402.34002[13] J. WITTE: 
Ein Eindeutigkeitssatz für die Differentialgleichung $y' = f(x,y)$. Math. Zeit.140 (1974), 281-287. 
MR 0377147 | 
Zbl 0289.34007