Previous |  Up |  Next

Article

Title: Fixed points, equilibria and maximal elements in linear topological spaces (English)
Author: Mehta, Ghanshyam
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 28
Issue: 2
Year: 1987
Pages: 377-385
.
Category: math
.
MSC: 47H05
MSC: 47H10
MSC: 54H25
MSC: 55M20
MSC: 90A14
MSC: 91B50
idZBL: Zbl 0632.47041
idMR: MR904761
.
Date available: 2008-06-05T21:29:24Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106548
.
Reference: [1] BROWDER F.: The fixed-point theory of multi-valued mappings in topological vector spaces.Mathematische Annalen 177 (1968), 283-301. Zbl 0176.45204, MR 0229101
Reference: [2] FAN K.: Some properties of convex sets related to fixed point theorems.Mathematische Annalen 266 (1984), 519-537. Zbl 0515.47029, MR 0735533
Reference: [3] FLAM S.: Abstract economies and games.Soochow Journal of Mathematics 5 (1979), 155-162. MR 0572740
Reference: [4] GALE D., MAS-COLELL A.: An equilibrium existence theorem for a general model without ordered preferences.Jou Journal of Mathematical Economics 2 (1975), 9-16. Zbl 0324.90010, MR 0381651
Reference: [5] GRANAS A., BEN-EL-MECHAIEKH, DEGUIRE P.: Fixed points and coincidences for setvalued maps of type $\Phi $.Comptes Rendus Acad. Sc, Paris, October 1982, pp. 381-384.
Reference: [6] HADŽIĆ O.: A coincidence theorem in topological vector spaces.Bulletin of the Australian Mathematical Society 33 (1986), 373-382. MR 0837483
Reference: [7] HIMMELBERG C. J.: Fixed points for compact multifunctions.Journal of Mathematical Analysis and Applications 38 (1972), 205-207. MR 0303368
Reference: [8] KELLEY J.: General Topology.Van Nostrand, Princeton, 1955. Zbl 0066.16604, MR 0070144
Reference: [9] MEHTA G., TARAFDAR E.: Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar.1985, Journal of Economic Theory (to appear). Zbl 0646.47036, MR 0882999
Reference: [10] TARAFDAR E.: On nonlinear variational inequalities.Proceedings of the American Mathematical Society 67 (1977), 95-98. Zbl 0369.47029, MR 0467408
Reference: [11] TARAFDAR E., MEHTA G.: On the existence of quasi-equilibrium in a competitive economy.International Journal of Science and Engineering 1 (1984), 1-12.
Reference: [12] YANNELIS N., PRABHAKAR N.: Existence of maximal elements and equilibria in linear topological spaces.Journal of Mathematical Economics 12 (1983), 233-245. Zbl 0536.90019, MR 0743037
.

Files

Files Size Format View
CommentatMathUnivCarol_028-1987-2_18.pdf 569.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo