[1] C. BENNET [86]: On some orderings of extensions of arithmetic. (thesis), University of Göteborg 1986.
[2] P. CLOTE [83]: Partition relations in arithmetic. Proc. Sixth Latin-American Symp. on Math. Logic, Venezuela 1983.
[3] P. CLOTE [85]:
Applications of the low-basis theorem in arithmetic. Proceedings of Recursion-theory week at Oberwolfach, Springer 1985.
MR 0820775
[4] S. FEFERMAN [60]:
Arithmetization of metamathematics in a general setting. Fund. Math. 49 (1960), 35-92.
MR 0147397
[5] D. GUASPARI [79]:
Partially conservative extensions of arithmetic. Trans. Amer. Math. Soc. 254 (1979), 47-68.
MR 0539907
[6] P. HÁJEK [71]:
On interpretability in set theories. Comment. Math. Univ. Carolinae 12 (1971), 73-79.
MR 0311470
[7] P. HÁJEK [72]:
On interpretability in set theories II. Comment. Math. Univ. Carolinae 13 (1972), 445-455.
MR 0323566
[8] P. HÁJEK [79]:
On partially conservative extensions of arithmetic. in: Logic Colloquium 78, North-Holland Pub. (1979), 225-234.
MR 0567671
[9] P. HÁJEK [81]:
On interpretability in theories containing arithmetic II. Comment. Math. Univ. Carolinae 22 (1981), 617-688.
MR 0647016
[10] P. HÁJEK [84]: On a new notion of partial conservativity. in: Logic Colloquium 83, Lect. Notes in Math. vol. 1104.
[11] P. HÁJEK M. HÁJK0VÁ [72]:
On interpretability in theories containing arithmetic. Fund. Math. 76 (1972), 131-137.
MR 0307897
[12] P. HÁJEK A. KUČERA [$\infty $] : On recursion theory in fragments of arithmetic. (to appear).
[13] G. KREISEL [62]:
On weak completeness of intuitionistic predicate logic. J. Symb. Logic 27 (1962), 139-158.
MR 0161796
[14] G. KREISEL [68]:
A survey on proof theory. J. Symb. Logic 33 (1968), 321-388.
MR 0281580
[15] P. LINDSTRÖM [79]:
Some results on interpretability. (Jensen, Mayoh, Motler, ed.), Proc. 5th Scandinavian Logic Symp., Aalborg Univ. Press 1979.
MR 0606608
[16] P. LINOSTRÖM [84]:
On partially conservative sentences and interpretability. Proceedings Amer. Math. Soc. 91 (1984), 436-443.
MR 0744645
[17] P. LINDSTRÖM [84a]:
On faithful interpretability. in: Logic Colloquium 83, Lect. Notes in Math. vol. 1104, Springer - Verlag 1984.
MR 0775720
[18] S. OREY [61]:
Relative interpretations. Z. Math. Logik und Grund. Math. 7 (1961), 146-153.
MR 0146082
[19] J. QUINSEY [81]: Sets of ${\Sigma}_k$-conservative sentences are ${\Pi}_2$-complete. J. Symb Logic 46 (1981), 442 (abstract.).
[20] P. PUDLÁK [85]:
Cuts, consistency statements and interpretations. J. Symb. Logic 50 (1985), 423-441.
MR 0793123
[21] J. S. SHEPERDSON [60]:
Representability of recursively enumerable sets in formal theories. Archiv f. math. Logik 5 (1960), 119-127.
MR 0126378
[22] C. SMORYŃSKI [81]:
Fifty years of self-reference. Notre Dame Journal of Formal Logi 22 (1981), 357-374.
MR 0622365
[23] C. SMORYŃSKI [81a]:
Calculating self-referential sentences: Guaspari sentences of the first kind. J. Symb. Logic 46 (1981), 329-344.
MR 0613286
[24] C. SMORYŃSKI [85]:
Self-reference and modal logic. Springer-Verlag 1985.
MR 0807778
[25] V. ŠVEJDAR [81]:
A sentence that is difficult to interpret. Comment. Math. Univ. Carolinae 22 (1981), 661-666.
MR 0647015
[26] V. ŠVEJDAR [83]:
Modal analysis of generalized Rosser sentences. J. Symb. Logic 48 (1983), 986-999.
MR 0727788
[27] A. TARSKI A. MOSTOWSKI R. M. ROBINSON [53J:
Undecidable theories. North-Holland P. C. 1953.
MR 0058532