Previous |  Up |  Next

Article

Title: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II. (English)
Author: Kuczumow, Tadeusz
Author: Stachura, Adam
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 29
Issue: 3
Year: 1988
Pages: 403-410
.
Category: math
.
MSC: 32F45
MSC: 32H15
MSC: 46C05
MSC: 47H09
MSC: 47H10
MSC: 54E40
idZBL: Zbl 0672.47036
idMR: MR0972824
.
Date available: 2008-06-05T21:34:25Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106656
.
Related article: http://dml.cz/handle/10338.dmlcz/106655
.
Reference: [1] T. FRANZONI E. VESENTINI: Holomorphic maps and invariant distances.North-Holland, Amsterdam, 1980. MR 0563329
Reference: [2] A. GENEL J. LINDENSTRAUSS: An example concerning fixed points.Israel J. Math. 22 (1975), 81-85. MR 0390847
Reference: [3] K. GOEBEL T. SĘK0WSKI A. STACHURA: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball.Nonlinear Analysis 4 (1980), 1011-1021. MR 0586863
Reference: [4] K. GOEBEL W. A. KIRK: Iteration processes for nonexpansive mappings.Contemporary Mathematics 21 (1983), 115-123. MR 0729507
Reference: [5] T. L. HAYDEN T. J. SUFFRIOGE: Biholomorphic maps in Hilbert space have a fixed point.Pacif. J. Math. 38 (1971), 419-422. MR 0305158
Reference: [6] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten.Über. Deutsch. Math. Verein 32 (1923), 175-176.
Reference: [7] S. KOBAYASHI: Invariant distances for projective structures.Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161. Zbl 0482.51015, MR 0663030
Reference: [8] T. KUCZUMOW: Fixed points of holomorphic mappings in the Hilbert ball.Colloq. Math., in print. Zbl 0674.47039, MR 0964327
Reference: [9] T. KUCZUMOW A. STACHURA: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I.Comment. Math. Univ. Carolinae 29 (1988), 399-402. MR 0972824
Reference: [10] S. REICH: Averaged mappings in the Hilbert ball.J. Math. Anal. Appl. 109(1985), 199-206. Zbl 0588.47061, MR 0796053
Reference: [11] I. J. SCHOENBERG: On a theorem of Kirszbraun and Valentine.Amer. Math. Monthly 60 (1953), 620-622. MR 0058232
Reference: [12] T. J. SUFFRIDGE: Common fixed points of commuting holomorphic mappings.The Michigan Math. 3. 21 (1975), 309-314. MR 0367661
.

Files

Files Size Format View
CommentatMathUnivCarol_029-1988-3_2.pdf 724.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo