[1] Alikakos N. D.: 
$L^p$ bounds of solutions of reaction-diffusion equations. Comm. Partial Differential Equations 4 (1979), 827-868. 
MR 0537465[2] Amann H.: 
Quasilinear parabolic systems under nonlinear boundary conditions. Arch. Rat. Mech. Anal. 92 (1986), 153-192. 
MR 0816618 | 
Zbl 0596.35061[3] DiBenedetto E.: 
Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 32 (1983), 83-118. 
MR 0684758 | 
Zbl 0526.35042[4] Fila M.: 
Boundedness of global solutions for the heat equation with nonlinear boundary conditions. Comment. Math. Univ. Carolinae 30 (1989), 479-484. 
MR 1031865 | 
Zbl 0702.35141[5] Filo J.: 
$L^∞$-estimate for nonlinear diffusion equations. manuscript. 
Zbl 0849.35061[6] Friedman A., McLeod B.: 
Blow-up of positive aolutiona of aemilinear heat equations. Indiana Univ. Math. J. 34 (1985), 425-447. 
MR 0783924[7] Ladyzhenskaya O. A., Solonikov V. A., Uraltseva N. N.: Linear and Quasi-linear Equations of Parabolic Type. Nauka, Moscow, 1967.
[8] Levine H. A., Payne L. E.: 
Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time. J. Diff. Eqns. 16 (1974), 319-334. 
MR 0470481[9] Nakao M.: 
Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations. Nonlinear Analysis 10 (1986), 299-314. 
MR 0834507 | 
Zbl 0595.35058[10] Nakao M.: 
$L^p$ -estimates of solutions of some nonlinear degenerate diffusion equations. J. Math. Soc. Japan 37 (1985), 41-63. 
MR 0769776 | 
Zbl 0584.65073[11] Nečas J.: 
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. 
MR 0227584[12] Rothe F.: 
Uniform bounds from bounded $L_p$-functional$ in reaction-diffusion equations. J. Diff. Eqns. 45 (1982), 207-233. 
MR 0665998