Previous |  Up |  Next

Article

Title: Boundary value problems with nonlinear boundary conditions in Banach spaces (English)
Author: Marino, Giuseppe
Author: Pietramala, Paolamaria
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 4
Year: 1990
Pages: 711-721
.
Category: math
.
MSC: 34B15
MSC: 34G20
MSC: 34K30
MSC: 47H15
idZBL: Zbl 0722.34058
idMR: MR1091368
.
Date available: 2008-06-05T21:46:05Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106906
.
Reference: [1] Scrucca E.: Un problema ai limiti quasi lineare in spazi di Banach.Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Nat. XLII (1967), 361-364. Zbl 0166.12801, MR 0222431
Reference: [2] Conti R.: Recent trends in the theory of boundary value problems for ordinary differential equations.Boll. U.M.I. XXII (1967), 135-178. Zbl 0154.09101, MR 0218650
Reference: [3] Opial Z.: Linear problems for systems of nonlinear differential equations.J. Diff. Eqns. 3 (1967), 580-594. Zbl 0161.06102, MR 0216068
Reference: [4] Bernfeld S. R., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems.Academic Press, New York, 1974. Zbl 0286.34018, MR 0445048
Reference: [5] Kartsatos A. G.: Non zero solutions to boundary value problems for nonlinear systems.Pacific J. Math. 53 (1974), 425-433. MR 0377164
Reference: [6] Furi M., Martelli M., Vignoli A.: Stably-solvable operators in Banach spaces.Atti Accad. Naz. Lincei Rend. Cl. Sc. Mat. Fis. Nat. VIII, LX (1976), 21-26. Zbl 0361.47024, MR 0487632
Reference: [7] Anichini G.: Nonlinear problems for systems of differential equations.Nonlin. Anal. TMA 1 (1977), 691-699. Zbl 0388.34011, MR 0592963
Reference: [8] Anichini G., Conti G.: Boundary-value problems with nonlinear boundary conditions.Nonlinearity 1 (1988), 1-10. Zbl 0672.34022, MR 0967470
Reference: [9] MartelH M.: A Rothe's type theorem for non compact acyclic-valued maps.Boll. U.M.I. 4, 11 Suppl. fasc. 3 (1975), 70-76. MR 0394752
Reference: [10] Schaefer H.: Über die Methode der a priori Schranken.Math. Ann. 129 (1955), 415-416. Zbl 0064.35703, MR 0071723
Reference: [11] Hale J. K.: Ordinary Differential Equations.Interscience, New York, 1969. Zbl 0186.40901, MR 0419901
Reference: [12] Krein S. G.: Linear differential equations in Banach spaces.Trans. Math. Mon. 29, AMS Providence, 1971. MR 0342804
Reference: [13] Zecca P., Zezza P.: Nonlinear boundary value problems in Banach spaces for multivalued differential equations on a noncompact interval.Nonlin. Anal. TMA 3 (1979), 347-352. MR 0532895
Reference: [14] Papageorgiou N. S.: Boundary value problems for evolution inclusions.Comm. Math. Univ. Carolinae 29 (1988), 355-363. Zbl 0696.35074, MR 0957404
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-4_11.pdf 958.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo