Previous |  Up |  Next

Article

Title: Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$ (English)
Author: Res, Ivo
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 15
Issue: 2
Year: 1979
Pages: 119-128
.
Category: math
.
MSC: 34E05
idZBL: Zbl 0432.34036
idMR: MR563144
.
Date available: 2008-06-06T06:06:19Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107030
.
Reference: [1] M. Ráb: Les dèvelopements asymptotiques des solutions de l'equation.Arch. Math. Brno, T2 (1966). MR 0199488
Reference: [2] M. Ráb: Über lineare Perturbationen eines Systems von linearen Differentialgleichungen.Czech. Mat. Journ. Praha, T 8 (83) (1953). MR 0102633
Reference: [3] M. Ráb: Asymptotic expansion of solutions of the equation $(p(x) y')' -q(x)y = 0$ with complex-valued coefficients.Arch. Math. Brno, MR 0315231
Reference: [4] I. Res: Asymptotische Eìgenschaften einer perturbierten interierten Differentialgleichung.Arch. Math. Brno, T X (1974), 149-158. MR 0477314
Reference: [5] I. Res: Asymptotické vlastnosti řešení diferenciálni rovnice ${A_{n-1}^{-1} (x) \ldots [A_1^{-1} (x) y']' \ldots }'=A_n (x) y$.Acta Universitatis Agriculturae Brno, Ser. C. 43, (1974, 4) 365--372.
Reference: [6] U. Richard: Serie asintotische per una classe di equationi differenziali de 2° ordine.Rendiconti del Sem. Math. Torino, Vol. 23 (1963-1964). MR 0173810
.

Files

Files Size Format View
ArchMath_015-1979-2_5.pdf 1.054Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo