[2] Kulig C.: 
On a System of Differential Equations. Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, LXXVII (1963), 37-48. 
MR 0204763 | 
Zbl 0267.34029[3] Ráb M.: 
The Riccati Differential Equation with Complex-valued coefficients. Czechoslovak Math. J. 20 (1970), 491-503. 
MR 0268452 | 
Zbl 0215.14201[4] Ráb M.: 
Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients. Journal of Differential Equations 25 (1977), 108-114. 
MR 0492454[5] Ráb M.: 
Asymptotic behaviour of the equation $x" + p(t)x' + q(t)x = 0$ with complex-valued coefficients. Arch. Math. (Brno) 4 (1975), 193-204. 
MR 0404776[6] Kalas J.: 
Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f. Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary) 1979, pp. 431-462. 
MR 0680606[7] Kalas J.: 
On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f. Arch. Math. (Brno) 17 (1981), 11-12. 
MR 0672484 | 
Zbl 0475.34028[8] Kalas J.: 
On certain asymptotic properties of the solutions of the equation $\dot{z} =f(t, z)$ with a complex-valued function f. Czech. Math. Journal, to appear. 
MR 0718923[9] Kalas J.: 
Asymptotic behaviour of equations $\dot{z} = q(t, z)-p(t) z^2$ and $\ddot{x} = x \varphi (t, \dot{x} x^{-1})$. Arch. Math. (Brno) 17 (1981), 191-206. 
MR 0672659