Previous |  Up |  Next

Article

Title: Forced oscillations in functional differential equations with deviating arguments (English)
Author: Singh, Bhagat
Author: Kusano, Takaŝi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 19
Issue: 1
Year: 1983
Pages: 9-17
.
Category: math
.
MSC: 34K99
idZBL: Zbl 0532.34046
idMR: MR724305
.
Date available: 2008-06-06T06:11:43Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107152
.
Reference: [1] J. R. Graef M. K. Grammatikopoulos, P. W Spikes: Growth and oscillatory behavior of solutions of a differential equation with a deviating argument.to appear. MR 0621534
Reference: [2] J. R. Graef, T. Kusano: Oscillation and nonoscillation criteria for a class of forced differential equations with deviating arguments.in preparation. Zbl 0562.34057
Reference: [3] A. Granata: Canonical factorizations of disconjugate differential operators.SIAM J. Math. Anal. 11 (1980), 160-172. Zbl 0431.34008, MR 0556506
Reference: [4] Y. Kitamura, T. Kusano: Nonlinear oscillation of higher order functional differential equations with deviating arguments.J. Math. Anal. Appl. 77 (1980), 100-119. Zbl 0465.34044, MR 0591264
Reference: [5] T. Kusano, H. Onose: Oscillations of functional differential equations with retarded argument.J. Differential Equations 15 (1974), 269-277. Zbl 0292.34078, MR 0333398
Reference: [6] M. Naito: Existence and asymptotic behavior of positive solutions of differential inequalities with deviating argument.Funkcial. Ekvac. 22 (1979), 127-142. Zbl 0437.34060, MR 0556574
Reference: [7] H. Onose: Oscillation and asymptotic behavior of solutions of retarded differential equations of arbitrary order.Hiroshima Math. J. 3 (1973), 333-360. Zbl 0299.34098, MR 0348231
Reference: [8] V. N. Ševelo, N. V. Vareh: On the oscillation of solutions of the equation $[r(t) y^{(n-1)} (t )]' + p(t) f(y(\tau (t))) = 0$.Ukrain. Mat. Ž. 25 (1973), 724-731. (Russian). MR 0326110
Reference: [9] V. N. Ševelo: Oscillation of Solutions of Differential Equations with Deviating Arguments.Naukova Dumka, Kiev, 1978. (Russian). MR 0492732
Reference: [10] B. Singh: A necessary and sufficient condition for the oscillation of an even order nonlinear delay differential equation.Canad. J. Math. 25 (1973), 1078-1089. Zbl 0273.34047, MR 0330706
Reference: [11] B. Singh: Impact of delays on oscillations in general functional equations.Hiroshima Math. J. 5 (1975), 351-361. MR 0422822
Reference: [12] W. F. Trench: Canonical forms and principal systems for general disconjugate equations.Trans. Amer. Math. Soc. 189 (1974), 319-327. Zbl 0289.34051, MR 0330632
.

Files

Files Size Format View
ArchMath_019-1983-1_2.pdf 785.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo