Previous |  Up |  Next

Article

Title: Decaying trajectories in sublinear retarded equations of arbitrary order (English)
Author: Singh, Bhagat
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 21
Issue: 4
Year: 1985
Pages: 219-228
.
Category: math
.
MSC: 34K25
idZBL: Zbl 0585.34052
idMR: MR833134
.
Date available: 2008-06-06T06:15:23Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107237
.
Reference: [1] I. Bihaгi: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations.Acta Math. Acad. Sci. Hungar., 7 (1956), 81-94. MR 0079154
Reference: [2] T. Kusano, H. Onose: Asymptotic decay of oscillatory solutions of second order differential equations with forcing term.Proc. Ameг. Math. Soc., 66 (1977), 251-257. Zbl 0367.34021, MR 0457901
Reference: [3] H. Onose: Oscillatory properties of ordinary differential equations of arbitrary order.J. Diffeгential Equations, 7 (1970), 454-458. MR 0257465
Reference: [4] Ch. G. Philos: Oscillatory and asymptotic behavior of all solutions of differential equations with deviating arguments.Proc. Royal Soc. Edinbuгgh, 81 (1978), 195-210. MR 0516413
Reference: [5] B. Singh: Asymptotically vanishing oscillatory trajectories in second order retarded equations.SIAM J. Math. Anal., 7 (1976), 37-44. Zbl 0321.34058, MR 0425308
Reference: [6] B. Singh: A correction to "Forced oscillations in general ordinary differential equations with deviating arguments".Hiroshima Math. J., 9 (1979), 297-302. Zbl 0409.34070, MR 0529336
Reference: [7] B. Singh: Slowly oscillating and nonoscillating trajectories in second order retarded sublinear equations.Math. Japon., 24 (1980), 617-623. Zbl 0429.34063, MR 0565547
Reference: [8] B. Singh: A necessary and sufficient condition for the oscillation of an even order nonlinear delay differential equation.Canad. J. Math., 25 (1973), 1078-1089. Zbl 0273.34047, MR 0330706
Reference: [9] B. Singh, T. Kusano: On asymptotic limits of nonoscillations in functional equations with retarded arguments.Hiroshima Math., J., 10 (1980), 557-565. Zbl 0447.34067, MR 0594135
Reference: [10] V. A. Staikos, Ch. G. Philos: Nonoscillatory phenomena and damped oscillations.Nonlinear Anal., 2 (1978), 197-210. MR 0512283
Reference: [11] V. N. Shevelov: Oscillation Theory in Differential Equations with Deviating Arguments.Academy of Sciences of Ukrainian SSR (1978).
.

Files

Files Size Format View
ArchMath_021-1985-4_6.pdf 761.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo