Previous |  Up |  Next

Article

Title: Edge theorem for finite partially ordered sets (English)
Author: Tasković, Milan R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 26
Issue: 1
Year: 1990
Pages: 1-5
.
Category: math
.
MSC: 05A05
MSC: 06A06
idZBL: Zbl 0727.06005
idMR: MR1188068
.
Date available: 2008-06-06T06:20:51Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107363
.
Reference: [1] K. Baclawski, A. Björner: Fixed points in partially ordered sets.Advances in Math. 31 (1979), 263-287. MR 0532835
Reference: [2] C. Blair, A. Roth: An extension and simple proof of a constrained lattice fixed point theorem.Algebra Universalis 9 (1979), 131 -132. Zbl 0421.06005, MR 0508675
Reference: [3] J. Klimeš: Fixed edge theorems for complete lattices.Arch. Math. 4. scripta, 17 (1981), 227-234.
Reference: [4] D. Kurepa: Fixpoints of decreasing mappings of ordered sets.Publ. Inst. Math., 32 (1975), 111-116. Zbl 0339.54037, MR 0369189
Reference: [5] I. Rival: A fixed point theorem for finite partially ordered sets.J. Combin. Theory, 21 (A), 1976, 309-318. MR 0419308
Reference: [6] A. Tarski: A lattice theoretical fixpoint theorem and its applications.Pacific J. Math., 5 (1955), 283-309. Zbl 0064.26004, MR 0074376
Reference: [7] A. Björner: Order-reversing maps and unique fixed points in complete lattices.Algebra Universalis 12 (1981), 402-403. MR 0624306
.

Files

Files Size Format View
ArchMath_026-1990-1_1.pdf 465.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo