Previous |  Up |  Next

Article

Title: Existence of solutions for hyperbolic differential inclusions in Banach spaces (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 28
Issue: 2
Year: 1992
Pages: 205-213
Summary lang: English
.
Category: math
.
Summary: In this paper we examine nonlinear hyperbolic inclusions in Banach spaces. With the aid of a compactness condition involving the ball measure of noncompactness we prove two existence theorems. The first for problems with convex valued orientor fields and the second for problems with nonconvex valued ones. (English)
Keyword: hyperbolic inclusion
Keyword: measure of noncompactness
Keyword: measurable multifunction
Keyword: upper and lower semicontinuous multifunctions
Keyword: fixed point
MSC: 34A60
MSC: 34G20
MSC: 35L15
MSC: 35R20
MSC: 35R70
MSC: 47N20
idZBL: Zbl 0781.34045
idMR: MR1222288
.
Date available: 2008-06-06T21:22:56Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107452
.
Reference: [1] Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.Marcel-Dekker, New York, 1980. MR 0591679
Reference: [2] Beckenback, E., Bellman, R.: Inequalities.Springer, Berlin, 1961. MR 0158038
Reference: [3] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69-86. MR 0947921
Reference: [4] De Blasi, F., Myjak, J.: On the Structure of the set of solutions of the Darboux problem for hyperbolic equations.Proc. Edinburgh Math. Soc. 29 (1986), 7-14. MR 0829175
Reference: [5] Hewitt, E., Stromberg, K.: Real and Abstract Analysis.Springer, New York, 1965. MR 0367121
Reference: [6] Kandilakis, D., Papageorgiou, N.S.: On the properties of the Aumann integral with applications to differential inclusions and optimal control.Czechoslovak Math. Jour. 39 (1989), 1-15. MR 0983479
Reference: [7] Kandilakis, D., Papageorgiou, N.S.: Properties of measurable multifunctions with stochastic domain and their applications.Math. Japonica 35 (1990), 629-643. MR 1067862
Reference: [8] Klein, E., Thompson, A.: Theory of Correspondences.Wiley, New York, 1984. MR 0752692
Reference: [9] Kubiaczyk, I.: Kneser’s theorem for hyperbolic equations.Functiones et Approximatio 14 (1984), 183-196. MR 0817358
Reference: [10] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlin. Anal-TMA 4 (1980), 985-999. MR 0586861
Reference: [11] Papageorgiou, N.S.: On the theory of Banach space valued integrable multifunctions Part 1: Integration and conditional expectation.J. Multiv. Anal. 17 (1985), 185-206. MR 0808276
Reference: [12] Papageorgiou, N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595
Reference: [13] Tarafdar, E., Vyborny, R.: Fixed point theorems for condensing multivalued mappings on a locally convex topological space.Bull. Austr. Math. Soc. 12 (1975), 161-170. MR 0383167
Reference: [14] Wagner, D.: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [15] Wilansky, A.: Modern Methods in Topological Vector Spaces.McGraw-Hill, New York, 1978. Zbl 0395.46001, MR 0518316
.

Files

Files Size Format View
ArchMathRetro_028-1992-2_9.pdf 250.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo