Previous |  Up |  Next

Article

Title: Ternary semigroups of morphisms of objects in categories (English)
Author: Chronowski, Antoni
Author: Novotný, Miroslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 2
Year: 1995
Pages: 147-153
Summary lang: English
.
Category: math
.
Summary: In this paper the notion of a ternary semigroup of morphisms of objects in a category is introduced. The connection between an isomorphism of categories and an isomorphism of ternary semigroups of morphisms of suitable objects in these categories is considered. Finally, the results obtained for general categories are applied to the categories $\bold{ REL}n+1$ and $\bold {ALG}n$ which were studied in [5]. (English)
Keyword: ternary semigroup
Keyword: mono-n-ary structure
Keyword: mono-n-ary algebra
Keyword: category
Keyword: homomorphism
Keyword: strong homomorphism
Keyword: isomorphism
MSC: 08A02
MSC: 08A62
MSC: 18B10
MSC: 20N10
MSC: 20N15
idZBL: Zbl 0839.20078
idMR: MR1357982
.
Date available: 2008-06-06T21:28:34Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107534
.
Reference: [1] MacLane S.: Categories for the working mathematician.Springer, New York - Heidelberg - Berlin 1971. MR 0354798
Reference: [2] Monk D., Sioson F. M.: m-Semigroups, semigroups, and function representation.Fund. Math. 59 (1966), 233-241. MR 0206133
Reference: [3] Novotný M.: Construction of all strong homomorphisms of binary structures.Czech. Math. J. 41 (116) (1991), 300-311. MR 1105447
Reference: [4] Novotný M.: Ternary structures and groupoids.Czech. Math. J. 41 (116) (1991), 90-98. MR 1087627
Reference: [5] Novotný M.: On some correspondences between relational structures and algebras.Czech. Math. J. 43 (118) (1993), 643-647. MR 1258426
Reference: [6] Novotný M.: Construction of all homomorphisms of groupoids.presented to Czech. Math. J.
Reference: [7] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories.Academia, Prague 1980. MR 0563525
Reference: [8] Sioson F. M.: Ideal theory in ternary semigroups.Math. Japon. 10 (1965), 63-84. Zbl 0247.20085, MR 0193043
.

Files

Files Size Format View
ArchMathRetro_031-1995-2_6.pdf 229.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo