Previous |  Up |  Next

Article

Title: Conjugacy criteria and principal solutions of self-adjoint differential equations (English)
Author: Došlý, Ondřej
Author: Komenda, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 3
Year: 1995
Pages: 217-238
Summary lang: English
.
Category: math
.
Summary: Oscillation properties of the self-adjoint, two term, differential equation \[(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=0\qquad \mathrm {(*)}\] are investigated. Using the variational method and the concept of the principal system of solutions it is proved that (*) is conjugate on $R=(-\infty ,\infty )$ if there exist an integer $m\in \lbrace 0,1,\dots ,n-1\rbrace $ and $c_0,\dots ,c_m\in R$ such that \[\int _\infty ^0 x^{2(n-m-1)}p^{-1}(x)\,dx=\infty =\int _0^\infty x^{2(n-m-1)}p^{-1}(x)\,dx\] and \[\limsup _{x_1\downarrow -\infty ,x_2\uparrow \infty }\int _{x_1}^{x_2}q(x)(c_0+c_1x+\dots + c_mx^m)^2\,dx\le 0,\quad q(x)\lnot \equiv 0.\] Some extensions of this criterion are suggested. (English)
Keyword: conjugate points
Keyword: principal system of solutions
Keyword: variational method
Keyword: conjugacy criteria
MSC: 34C10
idZBL: Zbl 0841.34033
idMR: MR1368260
.
Date available: 2008-06-06T21:29:03Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107542
.
Reference: [1] Ahlbrandt, C.D., Hinton, D.B., Lewis, R.T.: The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory.J. Math. Anal. Appl. 81 (1981), 234-277. MR 0618771
Reference: [2] Bliss, G. A.: .Lectures on the Calculus of Variations, Chicago Press, Chicago 1946. Zbl 1078.52013, MR 0017881
Reference: [3] Coppel, W. A.: .Disconjugacy, Lecture Notes in Math. No 220, Springer Verlag, Berlin-Heidelberg 1971. Zbl 1145.11002, MR 0460785
Reference: [4] Došlý, O.: The existence of conjugate points for self-adjoint linear differential equations.Proc. Roy. Soc. Edinburgh 113A (1989), 73-85. MR 1025455
Reference: [5] Došlý, O.: Oscillation criteria and discreteness of the spectrum of self-adjoint, even order, differential operators.Proc. Roy. Soc. Edinburgh 119A (1991), 219-231. MR 1135970
Reference: [6] Došlý, O., Osička, J.: Kneser-type oscillation criteria for self-adjoint two-term differential equations.Georgian Math. J. 2 (1995), 241-259. MR 1334880
Reference: [7] Glazman, I. M.: .Direct Methods of Qualitative Analysis of Singular Differential Operators, Jerusalem 1965. Zbl 1159.82319
Reference: [8] Hawking, S. W., Penrose, R.: The singularities of gravity collapse and cosmology.Proc. Roy. Soc. London A314 (1970), 529-548. MR 0264959
Reference: [9] Müller-Pfeiffer, E.: Existence of conjugate points for second and fourth order differential equations.Proc. Roy. Soc. Edinburgh 89A (1981), 281-91. MR 0635764
Reference: [10] Müller-Pfeiffer, E.: An oscillation theorem for self- adjoint differential equations.Math. Nachr. 108 (1982), 79-92. MR 0695118
Reference: [11] Müller-Pfeiffer, E.: Nodal Domains for One- and Two- Dimensional Elliptic Differential Equations.Z. Anal. Anwendungen 7 (1988), 135-139. MR 0951346
Reference: [12] Reid, W. T.: .Sturmian Theory for Ordinary Differential Equations, Acad. Press, New-York 1980. Zbl 1168.83300, MR 0606199
Reference: [13] Tipler, F. J.: General relativity and conjugate ordinary differential equations.J. Diff. Equations 30 (1978), 165-174. Zbl 0362.34023, MR 0513268
.

Files

Files Size Format View
ArchMathRetro_031-1995-3_6.pdf 314.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo