Article
Keywords:
iterative linear differential equation; global equivalence; oscillation
Summary:
In this paper there are generalized some results on oscillatory properties of the binomial linear differential equations of order $n (\ge 3$) for perturbed iterative linear differential equations of the same order.
References:
                        
[1] Čanturija, T.Ã.: 
Integraľnyje priznaki koleblemosti rešenij linejnych differenciaľnych uravnenij vyššich porjadkov. I. Diff. uravnenija, T. 16 (1980), 470-482. 
MR 0569776[2] Hustý, Z.: 
Die Iteration homogener linearer Differentialgleichungen. Publ. Fac. Sci. Univ. J. E. Purkyně (Brno), 449 (1964), 23-56. 
MR 0196166[3] Hustý  Z.: 
Über die Transformation und Äquivalenz homogener linearer Differentialgleichungen von höherer als der zweiten Ordnung. III. Teil, Czech. Math. J. 16 (91) (1966), 161-185. 
MR 0197813[4] Mařík, J., Ráb, M.: 
Asymptotische Eigenschaften von Lösungen der Differentialgleichung $y^{\prime \prime }=A(x)y$ im nichtoszillatorischen Fall. Czech. Math. J., 10 (85) (1960), 501-520. 
MR 0138842[5] Moravčík, J.: 
Some oscillatory properties of solutions of linear differential equations of the $n$-th order of the kind 3. IV. scientific conference of the VŠD Žilina, 1. section (Proceedings) (Slovak) (1973), 79-87. 
MR 0402185[6] Neuman, F.: 
Criterion of global equivalence of linear differential equations. Proceedings of the Royal Society of Edinburgh 97A (1984), 217-221. 
MR 0751194 | 
Zbl 0552.34009[7] Neuman, F.: 
Global properties of linear ordinary differential equations. Academia, Praha, 1991. 
MR 1192133 | 
Zbl 0784.34009[8] Oláh, R.: 
Integral conditions of oscillation of a linear differential equation. Math. Slovaca 39 (1989), 323-329. 
MR 1016349