Article
Keywords:
group algebra; n-weakly regular ring; n-regular ring
Summary:
We describe $n$-regular and $n$-weakly regular group algebras. $KG$ is $n$-regular if and only if  one of the following conditions holds: \item{(1)} $char K=0$ and $G$ is locally finite; or \item{(2)} $char K=p$, $\,G$ is locally finite, $\,\Delta^p(G)$ is finite and contains all the elements of $G$ of $p$-power order and $\,rad(K\Delta^p(G))^n=0$.
References:
                        
[1] Anderson, D., D.: 
Generalizations of Boolean rings. Boolean rings and von Neumann regular rings. Comment. Math. Univ. St. Pauli 35 (1986), 69-76. 
MR 0838191[3] Connel, I.: 
On the group ring. Can. J. Math. 15 (1963), 650-685. 
MR 0153705[4] Gupta, V.: 
A generalization of strongly regular rings. Acta Math. Hung. 43 (1984), No 1-2, 57-61. 
MR 0731964 | 
Zbl 0535.16015[6] Vasantha Kandasamy, W. B.: 
s-weakly regular group rings. Archiv. Math. (Brno) 29 (1993), No 1-2, 39-41. 
MR 1242627 | 
Zbl 0812.16003[7] Villamayor, O. E.: 
On weak dimenson of algebras. Pacif. J. Math. 9 (1959), 491-502. 
MR 0108527