Previous |  Up |  Next

Article

Title: On solutions of differential equations with ``common zero'' at infinity (English)
Author: Elbert, Árpád
Author: Vosmanský, Jaromír
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 1
Year: 1997
Pages: 109-120
Summary lang: English
.
Category: math
.
Summary: The zeros $c_k(\nu )$ of the solution $z(t, \nu )$ of the differential equation $z^{\prime \prime }+ q(t, \nu )\, z=0$ are investigated when $\lim \limits _{t\rightarrow \infty } q(t, \nu )=1$, $\int ^\infty | q(t, \nu )-1|\, dt <\infty $ and $q(t, \nu )$ has some monotonicity properties as $t\rightarrow \infty $. The notion $c_\kappa (\nu )$ is introduced also for $\kappa $ real, too. We are particularly interested in solutions $z(t, \nu )$ which are “close" to the functions $\sin t$, $\cos t$ when $t$ is large. We derive a formula for $d c_\kappa (\nu )/d\nu $ and apply the result to Bessel differential equation, where we introduce new pair of linearly independent solutions replacing the usual pair $J_\nu (t)$, $Y_\nu (t)$. We show the concavity of $c_\kappa (\nu )$ for $|\nu |\ge \frac{1}{2}$ and also for $|\nu |<\frac{1}{2}$ under the restriction $c_\kappa (\nu )\ge \pi \nu ^2 (1-2\nu )$. (English)
Keyword: common zeros
Keyword: dependence on parameter
Keyword: Bessel functions
Keyword: higher monotonicity
MSC: 33C10
MSC: 34A25
MSC: 34C10
MSC: 34M99
idZBL: Zbl 0914.34006
idMR: MR1464305
.
Date available: 2008-06-06T21:32:45Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107601
.
Reference: [1] O. Borůvka: Linear Differential Transformations at the second order.The English University Press, London, 1971. MR 0463539
Reference: [2] Z. Došlá: Higher monotonicity properties of special functions: Application on Bessel case $|\nu |<1/2$.Comment. Math. Univ. Carolinae 31 (1990), 232-241. MR 1077894
Reference: [3] Á. Elbert and A. Laforgia: On the square of the zeros of Bessel functions.SIAM J. Math. Anal. 15 (1984), 206-212. MR 0728696
Reference: [4] Á. Elbert and A. Laforgia: Monotonicity properties of the zeros of Bessel functions.SIAM J. Math. Anal. 17 (1986), 1483-1488. MR 0860929
Reference: [5] Á. Elbert and M. E. Muldoon: On the derivative with respect to a parameter of a zero of a Sturm-Liouville function.SIAM J. Math. Anal. 25 (1994), 354-364. MR 1266563
Reference: [6] Á. Elbert, F. Neuman and J. Vosmanský: Principal pairs of solutions of linear second order oscillatory differential equations.Differential and Integral Equations 5 (1992), 945-960. MR 1167505
Reference: [7] J. Vosmanský: Monotonicity properties of zeros of the differential equation $y^{\prime \prime }+ q(x)\,y=0$.Arch. Math.(Brno) 6 (1970), 37-74. MR 0296420
Reference: [8] J. Vosmanský: Zeros of solutions of linear differential equations as continuous functions of the parameter $\kappa $.Partial Differential Equations, Pitman Research Notes in Mathematical Series, 273, Joseph Wiener and Jack K. Hale, Longman Scientific & Technical, 1992, 253-257.
Reference: [9] G. N. Watson: A treatise on the Theory of Bessel Functions.2$^{\text{nd}}$ ed. Cambridge University Press, London, 1944. Zbl 0849.33001, MR 0010746
.

Files

Files Size Format View
ArchMathRetro_033-1997-1_12.pdf 288.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo