Previous |  Up |  Next

Article

Title: Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections (English)
Author: Ortaçgil, Ercüment
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 2
Year: 1998
Pages: 229-237
Summary lang: English
.
Category: math
.
Summary: We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann $\varepsilon $-connection. (English)
Keyword: covariant differentiation
Keyword: Christoffel symbols
MSC: 53A55
MSC: 53C05
idZBL: Zbl 0910.53006
idMR: MR1645308
.
Date available: 2009-02-17T10:11:45Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107649
.
Reference: [1] Birkhof, G. D.: Relativity and Modern Physics.Harvard Press, 1923.
Reference: [2] Cartan, E.: Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion.C.R. Acad. Sci. Paris 174, 1922, p. 522.
Reference: [3] Crittenden, R.: Covariant differentiation.Quart. J. Math. Oxford Ser. 13, 1962, 285-298. Zbl 0123.15402, MR 0146763
Reference: [4] Ehresmann, C.: Sur les connexions d’ordre superieur.Atti del V$^\circ $ Congresso del Unione Mat. Ital., 1955, 344-346.
Reference: [5] Eisenhart, L. P.: Riemannian Geometry.Princeton Univ. Press, 1926. Zbl 1141.53002, MR 1487892
Reference: [6] Guillemin, V.: The integrability problem for G-structures.Trans. A.M.S., 116, 1965, 544-560. Zbl 0178.55702, MR 0203626
Reference: [7] Kolář, I.: On the absolute differentiation of geometric object fields.Annales Polonici Mathematici, 1973, 293-304. MR 0326593
Reference: [8] Kolář, I., Michor, P., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag, Berlin, Heidelberg, 1993. MR 1202431
Reference: [9] Libermann, P.: Connexions d’ordre superieur et tenseurs de structure.Atti del Convegno Internazionale di Geometria Differenziale, Bologna, 1967.
Reference: [10] Ortaçgil, E.: Some remarks on the Christoffel symbols of Ehresmann $\varepsilon $-connections.3$^{rd}$ Meeting on Current Ideas in Mechanics and Related Fields, Segovia (Spain), June 19-23, 1995, Extracta Mathematicae Vol. II, Num. 1, 172–180 (1996). MR 1424754
Reference: [11] Ortaçgil, E.: On a differential sequence in geometry.Turkish Journal of Mathematics, 20 (1996), 473–479. MR 1432875
Reference: [12] Pommaret, J. F.: Lie Pseudogroups and Mechanics.Gordon and Breach, London, New York, 1988. Zbl 0677.58003, MR 0954613
Reference: [13] Pommaret, J. F.: Partial Differential Equations and Group Theory.Kluwer Academic Publishers, Dordrecht, Boston, London, 1994. Zbl 0808.35002, MR 1308976
Reference: [14] Szybiak, A.: Covariant differentiation of geometric objects.Rozprawy Mat. 56, Warszawa, 1967. Zbl 0158.40101, MR 0238208
Reference: [15] Terng, L.: Natural vector bundles and natural differential operators.American Journal of Math., 100, 1978, 775-828. Zbl 0422.58001, MR 0509074
Reference: [16] Veblen, O.: Normal coordinates for the geometry of paths.Proc. N.A.S., Vol. 8, 1922, p. 192.
Reference: [17] Veblen, O., Thomas, T. Y.: The geometry of paths.Transaction of A.M.S., Vol. 25, 1923, 551-608. MR 1501260
Reference: [18] Veblen, O.: Invariants of Quadratic Differential Forms.Cambridge Tract 24, University Press, Cambridge, 1927.
Reference: [19] Yuen, P. C.: Higher order frames and linear connections.Cahiers de Topologie et Geometrie Diff. 13 (3), 1971, 333-370. Zbl 0222.53033, MR 0307102
.

Files

Files Size Format View
ArchMathRetro_034-1998-2_2.pdf 264.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo