Previous |  Up |  Next

Article

Title: New examples of compact cosymplectic solvmanifolds (English)
Author: Marrero, J. C.
Author: Padron, E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 3
Year: 1998
Pages: 337-345
Summary lang: English
.
Category: math
.
Summary: In this paper we present new examples of $(2n+1)$-dimensional compact cosymplectic manifolds which are not topologically equivalent to the canonical examples, i.e., to the pro\-duct of the $(2m+1)$-dimensional real torus and the $r$-dimensional complex projective space, with $m,r\geq 0$ and $m+r=n.$ These new examples are compact solvmanifolds and they are constructed as suspensions with fibre the $2n$-dimensional real torus. In the particular case $n=1,$ using the examples obtained, we conclude that a $3$-dimensional compact flat orientable Riemannian manifold with non-zero first Betti number admits a cosymplectic structure. Furthermore, if the first Betti number is equal to $1$ then such a manifold is not topologically equivalent to the global product of a compact Kähler manifold with the circle $S^1.$ (English)
Keyword: cosymplectic manifolds
Keyword: solvmanifolds
Keyword: Kähler manifolds
Keyword: suspensions
Keyword: flat Riemannian manifolds
MSC: 53C15
MSC: 53C55
MSC: 53D35
idZBL: Zbl 0968.53054
idMR: MR1662115
.
Date available: 2009-02-17T10:14:17Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107660
.
Reference: [1] Blair D. E.: Contact manifolds in Riemannian geometry.Lecture Notes in Math., 509, Springer-Verlag, Berlin, (1976). Zbl 0319.53026, MR 0467588
Reference: [2] Blair D. E., Goldberg S. I.: Topology of almost contact manifolds.J. Diff. Geometry, 1, 347-354 (1967). Zbl 0163.43902, MR 0226539
Reference: [3] Chinea D., León M. de, Marrero J. C.: Topology of cosymplectic manifolds.J. Math. Pures Appl., 72, 567-591 (1993). Zbl 0845.53025, MR 1249410
Reference: [4] Hector G., Hirsch U.: Introduction to the Geometry of Foliations. Part A.Aspects of Math., Friedr. Vieweg and Sohn, (1981). Zbl 0486.57002, MR 0639738
Reference: [5] León M. de, Marrero J. C.: Compact cosymplectic manifolds with transversally positive definite Ricci tensor.Rendiconti di Matematica, Serie VII, 17 Roma, 607-624 (1997). Zbl 0897.53026, MR 1620868
Reference: [6] Wolf J. A.: Spaces of constant curvature.5nd ed., Publish or Perish, Inc., Wilmington, Delaware, (1984). Zbl 0556.53033, MR 0928600
.

Files

Files Size Format View
ArchMathRetro_034-1998-3_2.pdf 252.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo