Previous |  Up |  Next

Article

Title: From Sasakian 3-structures to quaternionic geometry (English)
Author: Watanabe, Yoshiyuki
Author: Mori, Hiroshi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 3
Year: 1998
Pages: 379-386
Summary lang: English
.
Category: math
.
Summary: We construct a family of almost quaternionic Hermitian structures from an almost contact metric 3-structure and also do three kinds of quaternionic Kähler structures from a Sasakian 3-structure. In particular we have a generalization of the second main result of Boyer-Galicki-Mann [5]. (English)
Keyword: almost contact metric 3-structure
Keyword: Sasakian 3-structure
Keyword: almost quaternionic Hermitian manifold
Keyword: quaternionic Kähler manifold
Keyword: hyperkähler manifold
MSC: 53C25
MSC: 53C26
idZBL: Zbl 0966.53032
idMR: MR1662052
.
Date available: 2009-02-17T10:14:34Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107664
.
Reference: [1] Alekseevsky D. V., Marchiafava S.: Almost quaternionic Hermitian and quasi-Kähler manifolds.Proceedings of the International Workshop on Almost Complex Manifolds (Sofia, 22-25 Agosto 1993) 150-175. MR 1375931
Reference: [2] Bär C.: Real Killing spinors and holonomy.Comm. Math. Phys. 154(1993) 509-521. MR 1224089
Reference: [3] Blair D. E.: Contact Manifolds in Riemannian Geometry.Lecture Notes in Math. (509, Springer Verlarg, Berlin-Heidelberg-New York, 1976). Zbl 0319.53026, MR 0467588
Reference: [4] Boyer C. P., Galicki K., Mann B. M.: Quaternionic reduction and Einstein manifolds.Comm. Anal. Geom. 1(2)(1993) 229-279. Zbl 0856.53038, MR 1243524
Reference: [5] Boyer C. P., Galicki K., Mann B. M.: The geometry and topology of 3-Sasakian manifolds.J. Reine Angew. Math. 455(1994) 183-220. Zbl 0889.53029, MR 1293878
Reference: [6] Ejiri N.: A generalization of minimal cones.Trans. Amer. Math. Soc. 276(1983) 347-360. Zbl 0511.53063, MR 0684514
Reference: [7] Hsiang W. Y.: On the laws of trigonometries of two-point homogeneous spaces.Ann. Global Anal. Geom. 7(1989) 29-45. Zbl 0695.53036, MR 1029843
Reference: [8] Ishihara S.: Quaternion Kählerian manifolds.J. Differential Geom. 9(1974) 483-500. Zbl 0297.53014, MR 0348687
Reference: [9] Kashiwada T.: A note on a Riemannian spaces with Sasakian 3-structure.Nat. Sci. Rep. Ochanomizu Univ. 22(1971) 1-2. MR 0303449
Reference: [10] Konishi M.: On manifolds with Sasakian 3-structure over quaternion Kählerian manifolds.Kōdai Math. Sem. Rep. 26(1975) 194-200. MR 0377782
Reference: [11] Kuo Y. Y.: On almost contact 3-structure.Tôhoku Math. J. 22(1970) 325-332. Zbl 0205.25801, MR 0278225
Reference: [12] Nakashima Y., Watanabe Y.: Some constructions of almost Hermitian and quaternion metric structures.Math. J. Toyama Univ. 13(1990) 119-138. Zbl 0722.53027, MR 1089079
Reference: [13] Tachibana S., Yu W. N.: On a Riemannian space admitting more than one Sasakian structure.Tôhoku Math. J. 22(1970) 536-540. MR 0275329
Reference: [14] Tanno S.: Killing vectors on contact Riemannian manifolds and fiberings related to the Hopf fibrations.Tôhoku Math. J. 23(1971) 313-333. MR 0287477
Reference: [15] Watanabe Y., Mori H.: Geometry on unitary-symmetric Kähler manifolds.Math. J. Toyama Univ. 16(1983) 135-193. MR 1255450
.

Files

Files Size Format View
ArchMathRetro_034-1998-3_6.pdf 255.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo