Previous |  Up |  Next

Article

Title: Fixed point theory for compact perturbations of pseudocontractive maps (English)
Author: O'Regan, Donal
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 3
Year: 1998
Pages: 401-415
Summary lang: English
.
Category: math
.
Summary: Some new fixed point results are established for mappings of the form $\,F_1+F_2\,$ with $\,F_2\,$ compact and $\,F_1\,$ pseudocontractive. (English)
Keyword: fixed points
Keyword: pseudocontractive maps
MSC: 47H06
MSC: 47H09
MSC: 47H10
MSC: 47J05
idZBL: Zbl 0970.47038
idMR: MR1662064
.
Date available: 2009-02-17T10:14:48Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107667
.
Reference: [1] Banas J., Goebel K.: Measures of noncompactness in Banach spaces.Marcel Dekker, New York, 1980. Zbl 0441.47056, MR 0591679
Reference: [2] Browder F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces.Proc. Symp. Pure Math, 18, Part II, Amer. Math. Soc., Providence, 1976. Zbl 0327.47022, MR 0405188
Reference: [3] Day M.: Normed linear spaces.Springer Verlag, Berlin, 1973. Zbl 0268.46013, MR 0344849
Reference: [4] Deimling K.: Ordinary differential equations in Banach spaces.Springer, 596, 1977. Zbl 0361.34050, MR 0463601
Reference: [5] Deimling K.: Zeros of accretive operators.Manuscripta Math., 13(1974), 365–374. Zbl 0288.47047, MR 0350538
Reference: [6] Dugundji J., Granas A.: Fixed point theory.Monografie Mat., PWN, Warsaw, 1982. Zbl 0483.47038, MR 0660439
Reference: [7] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals.Ann. Polon. Math., 47(1987), 331–346. Zbl 0656.47052, MR 0927581
Reference: [8] Gatica J. A., Kirk W. A.: Fixed point theorems for contractive mappings with applications to nonexpansive and pseudo–contractive mappings.Rocky Mount. J. Math., 4(1974), 69–79. MR 0331136
Reference: [9] Granas A.: Sur la méthode de continuité de Poincare.C.R. Acad. Sci. Paris, 282(1976), 983–985. Zbl 0348.47039, MR 0407894
Reference: [10] Kirk W. A., Schöneberg R.: Some results on pseudo–contractive mappings.Pacific Jour. Math., 71(1977), 89–100. Zbl 0362.47023, MR 0487615
Reference: [11] Krawcewicz W.: Contribution à la théorie des équations nonlinéaires dan les espaces de Banach.Dissertationes Matematicae, 273(1988). MR 0989165
Reference: [12] O’Regan D.: Theory of singular boundary value problems.World Scientific Press, Singapore, 1994. Zbl 0807.34028, MR 1286741
Reference: [13] O’Regan D.: Some fixed point theorems for concentrative mappings between locally convex linear topological spaces.Jour. Nonlinear Anal., 27(1996), 1437–1446. Zbl 0874.47035, MR 1408881
Reference: [14] O’Regan D.: Continuation fixed point theorems for locally convex linear topological spaces.Mathematical and Computer Modelling, 24(1996), 57–70. Zbl 0896.47045, MR 1408382
Reference: [15] Petryshyn W. V.: Structure of the fixed point set of $\,k$–set contractions.Arch. Rational Mech. Anal., 40(1970/71), 312–328. MR 0273480
Reference: [16] Precup R.: A Granas type approach to some continuation theorems and periodic boundary value problems with impulses.preprint. Zbl 0847.34028
Reference: [17] Schöneberg R.: On the domain invariance theorem for accretive mappings.J. London Math. Soc., 24(1981), 548–554. MR 0635886
Reference: [18] Zeidler E.: Nonlinear functional analysis and its applications.Vol I, Springer, New York, 1986. Zbl 0583.47050, MR 0816732
.

Files

Files Size Format View
ArchMathRetro_034-1998-3_9.pdf 289.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo