Previous |  Up |  Next

Article

Title: Some remarks on the equality $W(E,F^\ast) = K(E,F^\ast)$ (English)
Author: Emmanuele, G.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 4
Year: 1998
Pages: 417-425
Summary lang: English
.
Category: math
.
Summary: We show that the equality $W(E,F^\ast )=K(E,F^\ast )$ is a necessary condition for the validity of certain results about isomorphic properties in the projective tensor product $E \otimes _\pi F$ of two Banach spaces under some approximation property type assumptions. (English)
Keyword: operator spaces
Keyword: isomorphic properties
Keyword: approximation properties
MSC: 46B03
MSC: 46B20
MSC: 46B28
idZBL: Zbl 0970.46011
idMR: MR1679636
.
Date available: 2009-02-17T10:15:40Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107669
.
Reference: [D] Diestel, J.: A survey of results related to the Dunford-Pettis property.Contemporary Math. 2, Amer. Math. Soc. 1980. Zbl 0571.46013, MR 0621850
Reference: [E1] Emmanuele, G.: About certain isomorphic properties of Banach spaces in projective tensor products.Extract Math. 5 (1990) 23-25.
Reference: [E2] Emmanuele, G.: On the Reciprocal Dunford-Pettis property in projective tensor products.Math. Proc. Cambridge Phil. Soc. 109 (1991) 161-166. Zbl 0752.46042, MR 1075128
Reference: [E3] Emmanuele, G.: On Banach spaces with the property (V$^\ast $) of Pelczynski, II.Annali Mat. Pura Appl. 160 (1991) 163-170. MR 1163206
Reference: [E4] Emmanuele, G.: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Phil. Soc. 111 (1992) 331-335. MR 1142753
Reference: [E5] Emmanuele, G.: Banach spaces in which Dunford-Pettis sets are relatively compact.Archiv Math. 58 (1992) 477-485. Zbl 0761.46010, MR 1156580
Reference: [EH] Emmanuele, G., Hensgen, W.: Property (V) of Pelczynski in projective tensor products.Proc. Royal Irish Acad. 95A,2 (1995) 227-231. MR 1660381
Reference: [EJ] Emmanuele, G., John, K.: Uncomplementability of spaces of compact operators in larger spaces of operators.Czechoslovak Math. J., to appear. MR 1435603
Reference: [F] Feder, M.: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980) 196-205. Zbl 0411.46009, MR 0575060
Reference: [GJ] Ghoussoub, N., Johnson, W. B.: Factoring operators through Banach lattices not containing $C(0,1)$.Math. Z. 194 (1987) 153-171. MR 0876227
Reference: [GG] Gonzalez, M., Gutierrez, J.: Polynomial Grothendieck property.preprint 1994. MR 1289296
Reference: [HM] Heinrich, S., Mankiewicz, P.: Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces.Studia Math. 73 (1982) 215-251. MR 0675426
Reference: [J] John, K.: On the uncomplemented subspace $K(X,Y)$.Czechoslovak Math. J. 42 (1992) 167-173. Zbl 0776.46016, MR 1152178
Reference: [K] Kalton, N.: Spaces of compact operators.Math. Annalen 208 (1974) 267-278. Zbl 0266.47038, MR 0341154
Reference: [Le] D.Lewis: Conditional weak compactness in certain inductive tensor products.Math. Annalen 201 (1973) 201-209. Zbl 0234.46069, MR 0326417
Reference: [LT,I] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces, Sequence Spaces.EMG 92, Springer Verlag 1977. MR 0500056
Reference: [LT,II] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces, Function Spaces.EMG 97, Springer Verlag 1979. MR 0540367
Reference: [Lu] Lust, F.: Produits tensoriels projectifs d’espaces de Banach.Colloquium Math. 36 (1976) 255-267. Zbl 0356.46058, MR 0438153
Reference: [R] Ruess, W.: Duality and geometry of spaces of operators, in Functional Analysis: Surveys and Recent Results, III.Math. Studies 90, North Holland 1984. MR 0761373
Reference: [Se] Sersouri, A.: Propriété (u) dans les espaces d’opérateurs.Bull. Acad. Pol. Sci. 36 (1988) 655-659. Zbl 0622.46007, MR 1757565
Reference: [Sz] Szankowski, A.: Subspaces without the approximation property.Israel J. Math. 30 (1978) 123-129. Zbl 0384.46008, MR 0508257
Reference: [W] Willis, G.: The compact approximation property does not imply the approximation property.Studia Math. 103 (1992) 99-108. Zbl 0814.46017, MR 1184105
.

Files

Files Size Format View
ArchMathRetro_034-1998-4_1.pdf 251.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo