[2] Bing Liu, Yan, J.:
Oscillatory and asymptotic behaviour of second order nonlinear difference equations. Proc. Edin. Math. Soc. 39(1996), 525-533.
MR 1417694
[3] Bing Liu, Cheng, S. S.:
Positive solutions of second order nonlinear difference equation. J. Math. Anal. Appl. 204(1996), 482-493.
MR 1421461
[4] Cheng, S..,S., Li, H. J.:
Bounded and zero convergent solutions of second order difference equations. J. Math. Anal. Appl. 14(1989), 141-149.
MR 1009057
[5] Hardy, G. H., Littlewood, J. E., Polya, G.:
Inequalities. 2nd Edition, Cambridge University Press, 1988.
MR 0944909
[6] He, H. Z.:
Oscillatory and asymptotic behaviour of second order nonlinear difference equations. J. Math. Anal. Appl. 175(1993), 482-498.
MR 1219191 |
Zbl 0780.39001
[7] Szmanda, B.:
Nonoscillation, oscillation and growth of solutions of nonlinear difference equations of second order. J. Math. Anal. Appl. 109(1985), 22-30.
MR 0796040 |
Zbl 0589.39003
[8] Thandapani, E.:
Oscillation theorems for perturbed nonlinear second order difference equations. Computers Math. Appl. 28(1994), 309-316.
MR 1284245 |
Zbl 0807.39002
[9] Thandapani, E., Arul, R.:
Oscillation and nonoscillation theorems for a class of second order quasilinear difference equations. ZAA, 16 (1997), 749-759.
MR 1472729
[10] Thandapani, E., Arul, R.:
Oscillation theory for a class of second order quasilinear difference equations. Tamkang J. Math.Tamkang J. Math. 28 (1997), 229-238.
MR 1486791
[11] Trench, W. F.:
Asymptotic behaviour of solutions of Emden-Fowler difference equations with oscillating coefficients. J. Math. Anal. Appl. 179(1993), 135-153.
MR 1244954
[12] Wong, P. J. Y., Agarwal, R. P.:
Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations. Math. Comput. Modelling 21(1995), 63-84.
MR 1316120
[13] Wong, P. J. Y., Agarwal, R. P.:
Oscillation and monotone solutions of second order quasilinear difference equations. Funk. Ekva. 39(1996), 491-517.
MR 1433914
[14] Yu, Y. H.:
Higher type oscillation criterion and Sturm type comparison theorem. Math. Nachr. 153(1991), 485-496.
MR 1131938