Previous |  Up |  Next

Article

Keywords:
perturbed quasilinear difference equation; oscillatory solution
Summary:
This paper deals with oscillatory and asymptotic behaviour of solutions of second order quasilinear difference equation of the form \[ \Delta (a_{n-1}| \Delta y_{n-1}|^{\alpha -1} \Delta y_{n-1})+ F(n, y_n)= G(n, y_n, \Delta y_n), \quad n\in N(n_0) \qquad \mathrm {(E)}\] where $\alpha >0$. Some sufficient conditions for all solutions of (E) to be oscillatory are obtained. Asymptotic behaviour of nonoscillatory solutions of (E) are also considered.
References:
[1] Agarwal, R. P.: Difference Equations and Inequalities. Marcel Dekker, New York, 1992. MR 1155840 | Zbl 0952.39001
[2] Bing Liu, Yan, J.: Oscillatory and asymptotic behaviour of second order nonlinear difference equations. Proc. Edin. Math. Soc. 39(1996), 525-533. MR 1417694
[3] Bing Liu, Cheng, S. S.: Positive solutions of second order nonlinear difference equation. J. Math. Anal. Appl. 204(1996), 482-493. MR 1421461
[4] Cheng, S..,S., Li, H. J.: Bounded and zero convergent solutions of second order difference equations. J. Math. Anal. Appl. 14(1989), 141-149. MR 1009057
[5] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. 2nd Edition, Cambridge University Press, 1988. MR 0944909
[6] He, H. Z.: Oscillatory and asymptotic behaviour of second order nonlinear difference equations. J. Math. Anal. Appl. 175(1993), 482-498. MR 1219191 | Zbl 0780.39001
[7] Szmanda, B.: Nonoscillation, oscillation and growth of solutions of nonlinear difference equations of second order. J. Math. Anal. Appl. 109(1985), 22-30. MR 0796040 | Zbl 0589.39003
[8] Thandapani, E.: Oscillation theorems for perturbed nonlinear second order difference equations. Computers Math. Appl. 28(1994), 309-316. MR 1284245 | Zbl 0807.39002
[9] Thandapani, E., Arul, R.: Oscillation and nonoscillation theorems for a class of second order quasilinear difference equations. ZAA, 16 (1997), 749-759. MR 1472729
[10] Thandapani, E., Arul, R.: Oscillation theory for a class of second order quasilinear difference equations. Tamkang J. Math.Tamkang J. Math. 28 (1997), 229-238. MR 1486791
[11] Trench, W. F.: Asymptotic behaviour of solutions of Emden-Fowler difference equations with oscillating coefficients. J. Math. Anal. Appl. 179(1993), 135-153. MR 1244954
[12] Wong, P. J. Y., Agarwal, R. P.: Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations. Math. Comput. Modelling 21(1995), 63-84. MR 1316120
[13] Wong, P. J. Y., Agarwal, R. P.: Oscillation and monotone solutions of second order quasilinear difference equations. Funk. Ekva. 39(1996), 491-517. MR 1433914
[14] Yu, Y. H.: Higher type oscillation criterion and Sturm type comparison theorem. Math. Nachr. 153(1991), 485-496. MR 1131938
Partner of
EuDML logo