Previous |  Up |  Next

Article

Title: Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients (English)
Author: Cavalcanti, M. M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 1
Year: 1999
Pages: 29-57
Summary lang: English
.
Category: math
.
Summary: In this paper we study the boundary exact controllability for the equation \[ \frac{\partial }{\partial t}\left(\alpha (t){{\partial y}\over { \partial t}}\right)-\sum _{j=1}^n{{\partial }\over {\partial x_j}}\left(\beta (t)a(x){{\partial y}\over {\partial x_j}}\right)=0\;\;\;\hbox{in}\;\; \Omega \times (0,T)\,, \] when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in ${R}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions. (English)
Keyword: wave equation
Keyword: boundary value problem
Keyword: exact controllability
Keyword: Dirichlet-Neumann condition
MSC: 35B35
MSC: 35B40
MSC: 35L05
MSC: 35L99
MSC: 93B05
MSC: 93C20
idZBL: Zbl 1046.35013
idMR: MR1684521
.
Date available: 2008-06-06T22:22:34Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107683
.
Reference: [1] Bardos C., Cheng C.: Control and stabilization for the wave equation, part III : domain with moving boundary.Siam J. Control and Optim., 19 (1981), 123-138. MR 0603085
Reference: [2] Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary.Siam J. Control and Optim., 30, N.5 (1992), 1024-1065. Zbl 0786.93009, MR 1178650
Reference: [3] Cioranescu D., Donato P., Zuazua E.: Exact Boundary Controllability for the wave equation in domains with small holes.J. Math. Pures Appl. 71 (1992), 343-357. Zbl 0843.35009, MR 1176016
Reference: [4] Coron J. M.: Contrôlabilité exacte frontière de l’ équacion d’ Euler des fluides parfais incompressibles bidimensionnels.C.R.A.S. Paris, 317 (1993) S.I, 271-276. MR 1233425
Reference: [5] Fuentes Apolaya R.: Exact Controllability for temporally wave equation.Portugaliae Math., (1994), 475-488. MR 1313160
Reference: [6] Grisvard P.: Contrôlabilité exacte des solutions de l’équacion des ondes en présence de singularités.J. Math. pure et appl., 68 (1989), 215-259. MR 1010769
Reference: [7] Komornik V.: Contrôlabilité exacte en un temps minimal.C.R.A.S. Paris, 304 (1987), 223-235. Zbl 0611.49027, MR 0883479
Reference: [8] Komornik V.: Exact Controllability in short time for wave equation.Ann. Inst. Henri Poincaré, 6 (1989), 153-164. MR 0991876
Reference: [9] Lagnese J.: Control of wave processes with distributed controls supported on a subregion.Siam J. Control and Optmin. 21 (1983), 68-85. Zbl 0512.93014, MR 0688440
Reference: [10] Lagnese J.: Boundary Patch control of the wave equation in some non-star complemeted regions.J. Math. Anal. 77 (1980) 364-380. MR 0593220
Reference: [11] Lagnese J.: Boundary Value Control of a Class of Hyperbolic Equations in a General Region.Siam J. Control and Optim., 15, N.6 (1977), 973-983. Zbl 0375.93029, MR 0477480
Reference: [12] Lagnese J., Lions J. L.: Modelling, Analysis and Exact Controllability of Thin Plates.RMA Collection, N.6, Masson, Paris, (1988). MR 0953313
Reference: [13] Lasiecka I., Triggiani R.: Exact Controllability for the wave equation with Neumann boundary Control.Appl. Math. Optim. 19 (1989), 243-290. MR 0974187
Reference: [14] Lions J. L.: Controlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués.Tome 1, Masson, Paris, (1988). MR 0953547
.

Files

Files Size Format View
ArchMathRetro_035-1999-1_4.pdf 359.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo