Previous |  Up |  Next

Article

Title: Asymptotic estimation for functional differential equations with several delays (English)
Author: Čermák, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 4
Year: 1999
Pages: 337-345
Summary lang: English
.
Category: math
.
Summary: We discuss the asymptotic behaviour of all solutions of the functional differential equation \[y^{\prime }(x)=\sum _{i=1}^ma_i(x)y(\tau _i(x))+b(x)y(x)\,,\] where $b(x)<0$. The asymptotic bounds are given in terms of a solution of the functional nondifferential equation \[\sum _{i=1}^m|a_i(x)|\omega (\tau _i(x))+b(x)\omega (x)=0.\] (English)
Keyword: functional differential equation
Keyword: functional nondifferential equation
Keyword: asymptotic behaviour
Keyword: transformation
MSC: 34K25
MSC: 39B99
idZBL: Zbl 1048.34126
idMR: MR1744521
.
Date available: 2008-06-06T22:24:50Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107708
.
Reference: [1] Čermák, J.: On the asymptotic behaviour of solutions of certain functional differential equations.Math. Slovaca 48 (1998), 187–212. MR 1647674
Reference: [2] Čermák, J.: The asymptotic bounds of linear delay systems.J. Math. Anal. Appl. 225 (1998), 373–388. MR 1644331
Reference: [3] Dibl¡k, J.: Asymptotic equilibrium for a class of delay differential equations.Proc. of the Second International Conference on Difference Equations, S. Elaydi, I. Győri, G. Ladas (eds.), 1995, pp. 137–143. MR 1636319
Reference: [4] Hale, J. K., Verduyn Lunel, S. M.: Introduction to Functional Differential Equations, Springer-Verlag.New York, 1993. MR 1243878
Reference: [5] Heard, M. L.: A change of variables for functional differential equations.J. Differential Equations 18 (1975), 1–10. Zbl 0318.34069, MR 0387766
Reference: [6] Kato, T., Mcleod, J. B.: The functional differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$.Bull. Amer. Math. Soc. 77 (1971), 891–397. MR 0283338
Reference: [7] Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations, Encyclopedia of Mathematics and its Applications.Cambridge University Press, 1990. MR 1067720
Reference: [8] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations.Czechoslovak Math. J. 32 (107) (1982), 488–494. Zbl 0524.34070, MR 0669790
Reference: [9] Neuman, F.: Transformations and canonical forms of functional-differential equations.Proc. Roy. Soc. Edinburgh 115A (1990), 349–357. MR 1069527
Reference: [10] Zdun, M.: On Simultaneous Abel equations.Aequationes Math. (1989), 163–177. Zbl 0686.39009, MR 1018910
.

Files

Files Size Format View
ArchMathRetro_035-1999-4_6.pdf 374.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo