Article
Keywords:
separated jet; canonical exchange; natural transformation
Summary:
Given a map of a product of two manifolds into a third one, one can define its jets of separated orders $r$ and $s$. We study the functor $J$ of separated $(r;s)$-jets. We determine all natural transformations of $J$ into itself and we characterize the canonical exchange $J\rightarrow J^{s;r}$ from the naturality point of view.
References:
                        
[1] Kawaguchi M.: 
Jets infinitésimaux d’ordre séparé supérieur. Proc. Japan Acad. 37 (1961), 18–22. 
MR 0160167 | 
Zbl 0840.58004[2] Kolář I.: 
On some operations with connections. Math. Nachr. 69 (1975), 297–306. 
MR 0391157[3] Kolář I., Michor P.W., Slovák J.: 
Natural Operations in Differential Geometry. Springer-Verlag, 1993. 
MR 1202431[4] Kolář I., Vosmanská G.: 
Natural transformations of higher order tangent bundles and jet spaces. Čas. pěst. mat. 114 (1989), 181–186. 
MR 1063764[5] Libermann P.: 
Introduction to the theory of semi-holonomic jets. Archivum Math. (Brno) 33 (1997), 173–189. 
MR 1478771 | 
Zbl 0915.58004