[1] Ahlbrandt C. D., Hinton D. B., Lewis R. T.: 
The effect of variable change on oscillation and disconjugacy criteria with applications to spectral and asymptotic theory. J. Math. Anal. Appl., vol. 81 (1981), pp. 234–277.  
MR 0618771[2] Chanturia T. A.: 
On conjugacy of high order ordinary differential equations. Georgian Math. J., vol. 1 (1994), No. 1, 1–8.  
MR 1251490[3] Chantladze T., Kandelaki N., Lomtatidze A.: 
On zeros of solutions of the second order singular half–linear equation. Mem. Differential Equations Math. Phys., vol. 17 (1999), 127–154.  
MR 1710580[4] Chantladze T., Kandelaki N., Lomtatidze A.: 
Oscillation and nonoscillation criteria for the second order linear equation. Georgian Math. J., vol. 6 (1999), No. 5, 401–414.  
MR 1692963[5] Došlý O.: 
The multiplicity criteria for zero points of second order differential equations. Math. Slovaca, vol. 42 (1992), No. 2, 181–193.  
MR 1170102[6] Došlý O.: 
Conjugacy criteria for second order differential equations. Rocky Mountain J. of Math., vol. 23 (1993), No. 3, 849–861.  
MR 1245450[7] Hartman P.: 
Ordinary differential equations. John Wiley & Sons, Inc., New–York–London–Sydney, 1964.  
MR 0171038 | 
Zbl 0125.32102[8] Hawking S. W., Penrose R.: 
The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. London, Ser. A, vol. 314 (1970), 529–548.  
MR 0264959 | 
Zbl 0954.83012[9] Mingarelli A. B.: 
On the existence of conjugate points for the second order ordinary differential equation. SIAM J. Math. Anal., vol. 17 (1986), No. 1, 1–6.  
MR 0819206[10] Müller–Pfeiffer E.: 
Existence of conjugate points for second and fourth order differential equations. Proc. Roy. Soc. Edinburgh, Sect. A, vol. 89 (1981), 281–291.  
MR 0635764[11] Müller–Pfeiffer E.: 
Nodal domains of one–or–two–dimensional elliptic differential equations. Z. Anal. Anwendungen, vol. 7 (1988), 135–139.  
MR 0951346[12] Peña S.: 
Conjugacy criteria for half–linear differential equations. Arch. Math., vol. 35 (1999), No. 1, 1–11.  
MR 1684518[13] Tipler F. J.: 
General relativity and ordinary differential equations. J. Differential Equations, vol. 30 (1978), 165–174.  
MR 0513268[14] Willet D.: On the oscillatory behaviour of the solutions of second order linear differential equations. Ann. Polon. Math., vol. 21 (1969), 175–194.