Previous |  Up |  Next

Article

Title: The $l^p$ trichotomy for difference systems and applications (English)
Author: Matucci, Serena
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 519-529
.
Category: math
.
MSC: 39A10
MSC: 39A11
MSC: 39A12
idZBL: Zbl 1090.39501
idMR: MR1822822
.
Date available: 2008-06-06T22:27:27Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107767
.
Reference: 1. Agarval R. P.: Difference Equations and Inequalities. Theory, Methods and Applications.Second Edition, Pure and Appl. Math. Vol. 228, Marcel Dekker, New York, 2000. MR 1740241
Reference: 2. Alonso A. I., Hong J., Obaya R.: Exponential Dichotomy and Trichotomy of Difference Equations.J. Comput. Math. Appl., 38 (1999), 41–49. MR 1697341
Reference: 3. Cecchi M., Došlá Z., Marini M.: Positive Decreasing Solutions of Quasilinear Difference Equations.to appear (2001). MR 1861536
Reference: 4. Cecchi M., Marini M., Zezza P. L.: Asymptotic Properties of the Solutions of Nonlinear Equations with Dichotomies and Applications.Boll. U.M.I., Analisi Funz. Appl., Serie IV, 1 (1982), 209–234. MR 0696272
Reference: 5. Conti R.: Linear Differential Equations and Control.Instit. Math. Vol. 1, Acad. Press, New York, 1976. Zbl 0356.34007, MR 0513642
Reference: 6. Coppel W. A.: Stability and Asymptotic Behavior of Differential Equations.Heat Math. Monograph, Boston, 1965. Zbl 0154.09301, MR 0190463
Reference: 7. Coppel W. A.: Dichotomies in Stability Theory.Lecture Notes in Math. Vol. 629, Springer-Verlag, Berlin, 1978. Zbl 0376.34001, MR 0481196
Reference: 8. Elaydi S., Hajek O.: Exponential Trichotomy of Differential Systems.J. Math. Anal. Appl., 129 (1988), 362–374. Zbl 0651.34052, MR 0924294
Reference: 9. Elaydi S., Janglajew K.: Dichotomy and Trichotomy of Difference Equations.J. Difference Equations Appl., 3 (1998), 417–448. Zbl 0914.39013, MR 1618103
Reference: 10. Medina R., Pinto M.: Dichotomies and Asymptotic Equivalence of Nonlinear Difference Systems.J. Difference Equations Appl., 5, (1999), 287–303. Zbl 0973.39008, MR 1697061
Reference: 11. Papaschinopoulos G.: On Exponential Trichotomy of Linear Difference Equations.Appl. Anal., 40 (1991), 89–109. Zbl 0687.39003, MR 1095407
Reference: 12. Papaschinopoulos G., Schinas J.: A Criterion for the Exponential Dichotomy of Difference Equations.Rend. Sem. Fac. Sci. Univ. Cagliari, 54, (1), (1984), 61–71. Zbl 0607.39001, MR 0797224
Reference: 13. Papaschinopoulos G., Schinas J.: Criteria for an Exponential Dichotomy of Difference Equations.Czechoslovak Math. J., 35 (1985), 295–299. Zbl 0693.39001, MR 0787131
Reference: 14. Papaschinopoulos G., Schinas J.: Conditions for Exponential Dichotomy of Difference Equations.Rad. Mat., 1, (1), (1985), 9–24. Zbl 0589.39001, MR 0791743
Reference: 15. Sacher R. J., Sell G. R.: Existence of Dichotomies and Invariant splittings for Linear Differential Systems, III.J. Differential Eq. 22 (1976), 497–522. MR 0440621
Reference: 16. Talpalaru P.: Asymptotic Relationship Between Solutions of Two Systems of Difference Equations.Bul. Inst. Politechnic Iasi, XXI (XXV), f. 3–4, Sect. I (1975), 49–58. Zbl 0347.39002, MR 0397218
Reference: 17. Talpalaru P.: On Stability of Difference Systems.An. St. Univ. “Al. I. Cuza” Iasi, XXIII Sect. I (1) (1977), 71–76. Zbl 0378.39001, MR 0457984
Reference: 18. Talpalaru P.: Asymptotic Properties of the Solutions of Difference Systems via $l^p$ - Dichotomy.An. St. Univ. “Al. I. Cuza” Iasi, XXXVII Sect. I (2) (1991), 165–172. MR 1246871
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_20.pdf 256.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo