Previous |  Up |  Next

Article

Title: On some specific nonlinear ordinary difference equations (English)
Author: Petropoulou, Eugenia N.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 549-562
.
Category: math
.
MSC: 32H02
MSC: 39A10
MSC: 39A11
idZBL: Zbl 1090.39502
idMR: MR1822825
.
Date available: 2008-06-06T22:27:36Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107770
.
Reference: 1. R. P. Agarwal P. J. Y. Wong: Advanced Topics in Difference Equations.Kluwer Academic Publishers, 1997. MR 1447437
Reference: 2. C.J. Earle R.S. Hamilton: A fixed point theorem for holomorphic mappings.in Global Analysis Proceedings Symposium Pure Mathematics XVI, Berkeley, California, (1968), 61–65, American Mathematical Society, Providence, R.I., (1970). MR 0266009
Reference: 3. J. Feuer E. J. Janowski G. Ladas: Invariants for Some Rational Recursive Sequences with Periodic Coeffcients.J. Diff. Equat. Appl. 2 (1996), 167–174. MR 1384566
Reference: 4. E. A. Grove E. J. Janowski C. M. Kent G. Ladas: On the Rational Recursive Sequence $x_{n+1} = \frac{\alpha x_n + \beta}{(\gamma x_n \delta) x_{n-1}}$.Commun. Appl. Nonlinear Analysis 1 (1994), 61–72. MR 1295493
Reference: 5. E. A. Grove C. M. Kent G. Ladas: Boundedness and Persistence of the Nonautonomous Lyness and Max Equations.J. Diff. Equat. Appl. 3 (1998), 241–258. MR 1616018
Reference: 6. E.K. Ifantis: On the convergence of Power-Series Whose Coeffcients Satisfy a Poincaré-Type Linear and Nonlinear Difference Equation.Complex Variables 9 (1987), 63–80. MR 0916917
Reference: 7. G. Karakostas C. G. Philos Y. G. Sficas: The dynamics of some discrete population models.Nonlinear Analysis, Theory, Methods and Applications 17 (11) (1991), 1069–1084. MR 1136230
Reference: 8. Li Longtu: Global asymptotic stability of $x_{n+1} = F (x_n) g(x_{n−1})$.Ann. Diff. Equat, 14 (3) (1998), 518–525. Zbl 0963.39006, MR 1663227
Reference: 9. E.N. Petropoulou P.D. Siafarikas: Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane.Arch. Math. (Brno) 36 (2) (2000), 139–158. MR 1761618
Reference: 10. E.N. Petropoulou P.D. Siafarikas: Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane II.Comp. Math. Appl. (Advances in Difference Equations III), (to appear). MR 1838005
Reference: 11. I. A. Polyrakis: Lattice Banach spaces, order-isomorphic to $l_1$.Math. Proc. Camb. Phil. Soc. 94 (1983), 519–522. MR 0720802
Reference: 12. R. Y. Zhang Z. C. Wang Y. Chen J. Wu: Periodic solutions of a single species discrete population model with periodic harvest/stock.Comp. Math. Appl. 39 (1-2) (2000), 77–90. MR 1729420
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_23.pdf 268.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo