Previous |  Up |  Next

Article

Title: Inner amenability of Lau algebras (English)
Author: Nasr-Isfahani, R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 1
Year: 2001
Pages: 45-55
Summary lang: English
.
Category: math
.
Summary: A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras. (English)
Keyword: Lau algebra
Keyword: inner amenable
Keyword: topological inner invariant mean
MSC: 43A07
MSC: 46H05
idZBL: Zbl 1068.43001
idMR: MR1822765
.
Date available: 2008-06-06T22:28:15Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107785
.
Reference: [1] Akeman C. A.: Operator algebras associated with Fuchsian groups.Houston J. Math. 7 (1981), 295–301. MR 0640971
Reference: [2] Bekka M. A.: Amenable unitary representations of locally compact groups.Invent. Math. 100 (1990), 383–401. Zbl 0702.22010, MR 1047140
Reference: [3] Bonsall F. F., Duncan J.: Complete normed algebras.Springer-Verlag, New York, 1973. Zbl 0271.46039, MR 0423029
Reference: [4] Choda M., Choda M.: Fullness, simplicity and inner amenability.Math. Japon. 24 (1979), 235–246. Zbl 0436.46050, MR 0550002
Reference: [5] Choda M.: The factors of inner amenable groups.Math. Japon. 24 (1979), 145–152. Zbl 0407.46055, MR 0539400
Reference: [6] Choda M.: Effect of inner amenability on strong ergodicity.Math. Japon. 28 (1983), 109–115. Zbl 0523.46040, MR 0692558
Reference: [7] Effros E. G.: Property $\Gamma $ and inner amenability.Proc. Amer. Math. Soc. 47 (1975), 483–486. Zbl 0321.22011, MR 0355626
Reference: [8] Ghahramani F., Lau A. T.: Multipliers and modulus on Banach algebras related to locally compact groups.J. Funct. Anal. 150 (1997), 478–497. Zbl 0891.22007, MR 1479549
Reference: [9] Kaniuth E., Markfort A.: The conjugation representation and inner amenability of discrete groups.J. Reine Angew. Math. 432 (1992), 23–37. Zbl 0754.22001, MR 1184756
Reference: [10] Lau A. T.: Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups.Fund. Math. 118 (1983), 161–175. MR 0736276
Reference: [11] Lau A. T.: Uniformly continuous functionals on Banach algebras.Colloq. Math. LI (1987), 195–205. Zbl 0621.43005, MR 0891287
Reference: [12] Lau A. T., Paterson A. L.: Operator theoretic characterizations of [IN]-groups and inner amenability.Proc. Amer. Math. Soc. 102 (1988), 155–169. Zbl 0644.43002, MR 0934862
Reference: [13] Lau A. T., Paterson A. L.: Inner amenable locally compact groups.Trans. Amer. Math. Soc. 325 (1991), 155–169. Zbl 0718.43002, MR 1010885
Reference: [14] Lau A. T., Wong J. C.: Invariant subspaces for algebras of linear operators and amenable locally compact groups.Proc. Amer. Math. Soc. 102 (1988), 581–586. Zbl 0645.43002, MR 0928984
Reference: [15] Ling J. M.: Inner amenable semigroups I.J. Math. Soc. Japan 49 (1997), 603–616. Zbl 0899.43002, MR 1452705
Reference: [16] Losert V., Rindler H.: Asympototically central functions and invariant extensions of Dirac measures.Probability Measures on Groups, Proc. Conf., Oberwolfach, 1983. MR 0772419
Reference: [17] Losert V., Rindler H.: Conjugate invariant means.Colloq. Math. 15 (1987), 221–225. MR 0891290
Reference: [18] Namioka I.: Følner condition for amenable semigroups.Math. Scand. 15 (1964), 18–28. MR 0180832
Reference: [19] Nasr-Isfahani R.: Factorization in some ideals of Lau algebras with application to semigroup algebras.Bull. Belg. Math. Soc. 7 (2000), 429–433. MR 1788147
Reference: [20] Paschke W. L.: Inner amenability and conjugate operators.Proc. Amer. Math. Soc. 71 (1978), 117–118. MR 0473849
Reference: [21] Paterson A. L.: Amenability.Mathematical Surveys and Monographs, No. 29, Amer. Math. Soc., Providence, R. I., 1988. Zbl 0648.43001, MR 0961261
Reference: [22] Pier J. P.: Quasi-invariance interieure sur les groupes localement compacts.Actualités Math. (1982), 431–436. Zbl 0487.43002
Reference: [23] Pier J. P.: Amenable locally compact groups.John Wiley and Sons, New York, 1984. Zbl 0621.43001, MR 0767264
Reference: [24] Pier J. P.: Amenable Banach algebras.Pitman Res. Notes Math. Ser., London, 1988. Zbl 0676.46036, MR 0942218
Reference: [25] Sakai S.: $C^*$-algebras and $W^*$-algebras.Springer-Verlag, Berlin and New York, 1971. Zbl 0233.46074, MR 0442701
Reference: [26] Takesaki M.: Theory of operator algebras.Springer-Verlag, Berlin and New York, 1979. Zbl 0436.46043, MR 0548728
Reference: [27] Watatani Y.: The character groups of amenable group $C^*$-algebras.Math. Japon. 24 (1979), 141–144. Zbl 0412.46050, MR 0539399
Reference: [28] Yuan C. K.: The existence of inner invariant means on $L^{\infty }(G)$.J. Math. Anal. Appl. 130 (1988), 514–524. MR 0929957
.

Files

Files Size Format View
ArchMathRetro_037-2001-1_6.pdf 337.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo