Title:
|
Asymptotic behaviour of solutions of delay differential equations of $n$-th order (English) |
Author:
|
Parhi, N. |
Author:
|
Padhi, Seshadev |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
37 |
Issue:
|
2 |
Year:
|
2001 |
Pages:
|
81-101 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper deals with property A and B of a class of canonical linear homogeneous delay differential equations of $n$-th order. (English) |
Keyword:
|
oscillation |
Keyword:
|
nonoscillation |
Keyword:
|
delay-differential equation |
Keyword:
|
asymptotic behaviour |
MSC:
|
34K06 |
MSC:
|
34K11 |
MSC:
|
34K12 |
idZBL:
|
Zbl 1090.34052 |
idMR:
|
MR1838406 |
. |
Date available:
|
2008-06-06T22:28:30Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107791 |
. |
Reference:
|
[1] Dzurina, J.: A comparison theorem for linear delay-differential equations.Arch. Math. (Brno) 31 (1995), 113–120. Zbl 0841.34071, MR 1357979 |
Reference:
|
[2] Dzurina, J.: Asymptotic properties of $n$-th order differential equations.Math. Nachr. 171 (1995), 149–156. Zbl 0817.34039, MR 1316355 |
Reference:
|
[3] Fink, A.M. and Kusano, T.: Nonoscillation theorems for differential equations with general deviating arguments.Lecture Notes in Math. #1032, 224–239, Springer, Berlin. MR 0742641 |
Reference:
|
[4] Gyori, I. and Ladas, G.: Oscillation Theory of Delay Differential Equations.Clarendon Press, Oxford, 1991. MR 1168471 |
Reference:
|
[5] Kiguradze, I.T.: On the oscillation of solutions of the equation $d^m u/dt^m + a(t)|u|^n \text{sign}\, u=0$.Mat. Sb. 65 (1964), 172–187 (Russian). Zbl 1004.34012, MR 0173060 |
Reference:
|
[6] Kusano, T. and Naito, M.: Comparison theorems for functional differential equations with deviating arguments.J. Math. Soc. Japan 3 (1981), 509–532. MR 0620288 |
Reference:
|
[7] Kusano, T, Naito, M. and Tanaka, K.: Oscillatory and asymptotic behaviour of solutions of a class of linear ordinary differential equations.Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 25–40. MR 0636062 |
Reference:
|
[8] Ladde, G.S, Lakshmikantham, V. and Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments.Marcel Dekker, Inc. New York, 1987. MR 1017244 |
Reference:
|
[9] Parhi, N. and Padhi, S.: On asymptotic behaviour of delay differential equations of third order.Nonlinear Anal. TMA 34 (1998), 391–403. MR 1635717 |
Reference:
|
[10] Parhi, N. and Padhi, S.: Asymptotic behaviour of a class of third order delay differential equations.Math. Slovaca 50 (2000), 315–333. MR 1775304 |
Reference:
|
[11] Trench, W.F.: Canonical forms and principal systems for general disconjugate equations.Trans. Amer. Math. Soc. 189 (1974), 319–327. Zbl 0289.34051, MR 0330632 |
. |