Title:
|
Common fixed points of Greguš type multi-valued mappings (English) |
Author:
|
Rashwan, R. A. |
Author:
|
Ahmed, Magdy A. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
38 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
37-47 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This work is considered as a continuation of [19,20,24]. The concepts of $\delta $-compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued mapping and a single-valued mapping are used to establish some common fixed point theorems of Greguš type under a $\phi $-type contraction on convex metric spaces. Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem B below) and Jungck [16] are thereby obtained. An example is given to support our extension. (English) |
Keyword:
|
common fixed points |
Keyword:
|
$\delta $-compatible mappings |
Keyword:
|
sub-compatible mappings |
Keyword:
|
complete convex metric spaces |
MSC:
|
47H04 |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 1088.54506 |
idMR:
|
MR1899566 |
. |
Date available:
|
2008-06-06T22:29:44Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107817 |
. |
Reference:
|
[1] Banas, J. and El-Sayed , W. G.: Solvability of Hammerstein integral equation in the class of functions of locally bounded variation.Boll. Un. Mat. Ital. 7, 5-B (1991), 893–904. MR 1146779 |
Reference:
|
[2] Beg, I. and Shahzad, W.: An application of a fixed point theorem to best simultaneous approximation.Approx. Theory Appl.$ \& $ its Appl. 10, No. 3 (1994), 1–4. MR 1308834 |
Reference:
|
[3] Chen, M. J. and Park, S.: A unified approach to generalized quasi-variational inequalities.Comm. Appl. Nonlinear Anal. 4, No. 2 (1997), 103–118. MR 1442102 |
Reference:
|
[4] Ciric, L. B.: On a common fixed point theorem of a Greguš type.Publ. Inst. Math. (Beograd) 49, No. 63 (1991), 174–178. Zbl 0753.54023, MR 1127395 |
Reference:
|
[5] Ciric, L. B.: On Diviccaro, Fisher and Sessa open questions.Arch. Math. (Brno) 29, No.3-4 (1993), 145–152. Zbl 0810.47051, MR 1263115 |
Reference:
|
[6] Ciric, L. B.: On some discontinuous fixed point mappings in convex metric spaces.Czechoslovak Math. J. 43, No. 118 (1993), 319–326. Zbl 0814.47065, MR 1211753 |
Reference:
|
[7] Ciric, L. B.: Nonexpansive type mappings and a fixed point theorem in convex metric space.Rend. Accad. Naz. Sci. XL Mem. Math. Appl. (5) 15, fasc. 1 (1995), 263–271. MR 1387560 |
Reference:
|
[8] Davies, R. O. and Sessa, S.: A common fixed point theorem of Greguš type for compatible mappings.Facta Univ. Ser. Math. Inform. 7 (1992), 99–106. MR 1346598 |
Reference:
|
[9] Diviccaro, M. L., Fisher, B. and Sessa, S.: A common fixed point theorem of Greguš type.Publ. Math. Debrecen 34, No. 1-2 (1987), 83–89. MR 0901008 |
Reference:
|
[10] Fisher, B.: Common fixed points of mappings and set-valued mappings.Rostock. Math. Kolloq. 18 (1981), 69–77. Zbl 0479.54025, MR 0655385 |
Reference:
|
[11] Fisher, B. and Sessa, S.: On a fixed point theorem of Greguš.Int. J. Math. Math. Sci. 9, No. 1 (1986), 23–28. MR 0837098 |
Reference:
|
[12] Fisher, B. and Sessa, S.: Common fixed point theorems for weakly commuting mappings.Period. Math. Hungar. 20, No. 3 (1989), 207–218. MR 1028958 |
Reference:
|
[13] Greguš, M.: A fixed point theorem in Banach space.Boll. Un. Math. Ital. 17- A, No. 5 (1980), 193–198. MR 0562137 |
Reference:
|
[14] Guay, M. D., Singh, K. L. and Whitfield, J. H.: Fixed point theorems for nonexpansive mappings in convex metric spaces.Proc. Conference on Nonlinear Analysis 60 (1982), 179–189. MR 0689554 |
Reference:
|
[15] Jungck, G.: Compatible mapppings and common fixed points.Int. J. Math. Math. Sci. 9 (1986), 771–779. MR 0870534 |
Reference:
|
[16] Jungck, G.: On a fixed point theorem of Fisher and Sessa.Int. J. Math. Math. Sci. 13 (1990), 497–500. Zbl 0705.54034, MR 1068012 |
Reference:
|
[17] Jungck, G. and Rhoades, B. E.: Some fixed point theorems for compatible maps.Int. J. Math. Math. Sci. 16, No. 3 (1993), 417–428. MR 1225486 |
Reference:
|
[18] Khan, M. S. and Imdad, M.: A common fixed point theorem for a class of mappings.Indian J. Pure Appl. Math. 14 (1983), 1220–1227. MR 0720454 |
Reference:
|
[19] Liu Li-Shan: On common fixed points of single-valued mappings and set-valued mappings.J. Qufu Norm. Univ. Nat. Sci. Ed. 18, No. 1 (1992), 6–10. MR 1160972 |
Reference:
|
[20] Liu Li-Shan: Common fixed point theorems for (sub) compatible and set-valued generalized nonexpansive mappings in convex metric spaces.Appl. Math. Mech. 14, No. 7 (1993), 685–692. MR 1247315 |
Reference:
|
[21] Mukherjee, R. N. and Verma, V.: A note on fixed point theorem of Greguš.Math. Japon. 33 (1988), 745–749. MR 0972387 |
Reference:
|
[22] Murthy, P. P., Cho, Y. J. and Fisher, B.: Common fixed points of Greguš type mappings.Glas. Math. 30, No. 50 (1995), 335–341. MR 1381358 |
Reference:
|
[23] Pathak, H. K. and Fisher, B.: Common fixed point theorems with applications in dynamic programming.Glas. Math. 31, No. 51 (1996), 321–328. MR 1444983 |
Reference:
|
[24] Rashwan, R. A. and Ahmed, M. A.: Common fixed points for generalized contraction mappings in convex metric spaces.J. Qufu Norm. Univ. Ed. 24, No. 3 (1998), 15–21. MR 1665104 |
Reference:
|
[25] Sessa, S.: On a weak commutativity condition of mappings in fixed point considerations.Publ. Inst. Math. (Beograd) 32, No. 46 (1982), 149–153. Zbl 0523.54030, MR 0710984 |
Reference:
|
[26] Sessa, S. and Fisher, B.: Common fixed points of two mappings on Banach spaces.J. Math. Phys. Sci. 18 (1984), 353–360. MR 0803962 |
Reference:
|
[27] Sessa, S., Khan, M. S. and Imdad, M.: Common fixed point theorem with a weak commutativity condition.Glas. Mat. 21, No. 41 (1986), 225–235. MR 0866767 |
Reference:
|
[28] Takahashi, W.: A convexity in metric space and nonexpansive mappings.Kodai Math. Semin. Rep. 22 (1970), 142–149. Zbl 0268.54048, MR 0267565 |
. |