Previous |  Up |  Next

Article

Title: Random fixed points of multivalued maps in Fréchet spaces (English)
Author: Shahzad, Naseer
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 2
Year: 2002
Pages: 95-100
Summary lang: English
.
Category: math
.
Summary: In this paper we prove a general random fixed point theorem for multivalued maps in Frechet spaces. We apply our main result to obtain some common random fixed point theorems. Our main result unifies and extends the work due to Benavides, Acedo and Xu [4], Itoh [8], Lin [12], Liu [13], Tan and Yuan [20], Xu [23], etc. (English)
Keyword: multivalued map
Keyword: random fixed point
Keyword: Frechet space
MSC: 47H10
MSC: 47H40
MSC: 60H25
idZBL: Zbl 1068.47075
idMR: MR1909591
.
Date available: 2008-06-06T22:30:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107824
.
Reference: [1] Beg I., Shahzad N.: Some random approximation theorems with applications.Nonlinear Anal. 35 (1999), 609–616. Zbl 0931.60054, MR 1656922
Reference: [2] Beg I., Shahzad N.: Random fixed points of weakly inward operators in conical shells.J. App. Math. Stochastic Anal. 8 (1995), 261–264. Zbl 0828.47044, MR 1342645
Reference: [3] Beg I., Shahzad N.: Applications of the proximity map to random fixed point theorems in Hilbert spaces.J. Math. Anal. Appl. 196 (1995), 606–613. MR 1362709
Reference: [4] Benavides T. D., Acedo G. L., Xu H. K.: Random fixed points of set-valued operators.Proc. Amer. Math. Soc. 124 (1996), 831–838. Zbl 0841.47032, MR 1301487
Reference: [5] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis.Bull. Amer. Math. Soc. 82 (1976), 641–657. Zbl 0339.60061, MR 0413273
Reference: [6] Browder F. E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces.Bull. Amer. Math. Soc. 74 (1968), 660–665. Zbl 0164.44801, MR 0230179
Reference: [7] Himmelberg C. J.: Measurable relations.Fund. Math. 87 (1975), 53–72. Zbl 0296.28003, MR 0367142
Reference: [8] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces.J. Math. Anal. Appl. 67 (1979), 261–273. Zbl 0407.60069, MR 0528687
Reference: [9] Itoh S.: A random fixed point theorem for a multivalued contraction mapping.Pacific J. Math. 68 (1977), 85–90. Zbl 0335.54036, MR 0451228
Reference: [10] Kuratowski K., Ryll-Nardzewski C.: A general theorem on selectors.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 379–403. Zbl 0152.21403, MR 0188994
Reference: [11] Lami Dozo E.: Multivalued nonexpansive mappings with Opial’s condition.Proc. Amer. Math. Soc. 38 (1973), 286–292. MR 0310718
Reference: [12] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set-contractive random maps.Proc. Amer. Math. Soc. 123 (1995), 1167–1176. Zbl 0834.47049, MR 1227521
Reference: [13] Liu L. S.: Some random approximations and random fixed point theorems for 1-set-contractive random operators.Proc. Amer. Math. Soc. 125 (1997), 515–521. Zbl 0869.47031, MR 1350953
Reference: [14] Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings.Bull. Amer. Math. Soc. 73 (1967), 595–597. Zbl 0179.19902, MR 0211301
Reference: [15] Papageorgiou N. S.: Random fixed points and random differential inclusions.Int. J. Math. Math. Sci. 11 (1988), 551–560. Zbl 0658.60090, MR 0947287
Reference: [16] Rudin W.: Functional Analysis.McGraw Hill, New York, 1973. Zbl 0253.46001, MR 0365062
Reference: [17] Shahzad N.: Random fixed point theorems for various classes of 1-set-contractive maps in Banach spaces.J. Math. Anal. Appl. 203 (1996), 712–718. Zbl 0893.47037, MR 1417125
Reference: [18] Shahzad N., Khan L. A.: Random fixed points for 1-set-contractive random maps in Frechet spaces.J. Math. Anal. Appl. 231 (1999), 68–75. MR 1676737
Reference: [19] Shahzad N., Latif S.: Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps.J. Math. Anal. Appl. 237 (1999), 83–92. Zbl 1115.47314, MR 1708163
Reference: [20] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximation.Stochastic Anal. Appl. 15 (1997), 103–123. Zbl 0892.47060, MR 1429860
Reference: [21] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximation in cones.J. Math. Anal. Appl. 185 (1994), 378–390. Zbl 0856.47036, MR 1283065
Reference: [22] Thomas G. E. F.: Integration on functions with values in locally convex Suslin spaces.Trans. Amer. Math. Soc. 212 (1975), 61–81. MR 0385067
Reference: [23] Xu H. K.: Some random fixed point theorems for condensing and nonexpansive operators.Proc. Amer. Math. Soc. 110 (1990), 495–500. Zbl 0716.47029, MR 1021908
Reference: [24] Xu H. K., Beg I.: Measurability of fixed point sets of multivalued random operators.J. Math. Anal. Appl. 225 (1998), 62–72. Zbl 0913.47057, MR 1639289
.

Files

Files Size Format View
ArchMathRetro_038-2002-2_2.pdf 269.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo